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In this paper I introduce quantile spectral densities that summarize the cyclical
behavior of time series across their whole distribution by analyzing periodicities in
quantile crossings. This approach can capture systematic changes in the impact of
cycles on the distribution of a time series and allows robust spectral estimation and
inference in situations where the dependence structure is not accurately captured by
the auto-covariance function. I study the statistical properties of quantile spectral
estimators in a large class of nonlinear time series models and discuss inference both at
fixed and across all frequencies. Monte Carlo experiments and an empirical example
illustrate the advantages of quantile spectral analysis over classical methods when
standard assumptions are violated.
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1. Introduction

Classical spectral analysis uses estimates of the spectrum or spectral density, a weighted
sum of auto-covariances, to quantify the relative magnitude and frequency of cycles present
in a time series. However, if the dependence structure is not accurately captured by
the auto-covariance function, for example, because the time series under consideration
is uncorrelated or heavy-tailed, then spectral analysis can provide only uninformative or
even misleading results. In this paper I discuss estimation and inference for a new class of
spectral densities that summarize the cyclical behavior across the whole distribution of a
time series by analyzing how frequently a process crosses its marginal quantiles. Functions
from this class, which I refer to as quantile spectra or quantile spectral densities, are
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similar to classical spectral densities in both shape and interpretation, but can capture
systematic changes in the impact of cycles on the distribution of a time series. Such changes
arise naturally in a variety of modern time series models, including stochastic volatility
and random coefficient autoregressive models, and cannot be identified through classical
spectral analysis, where cycles are assumed to be global phenomena with a constant effect
on the whole distribution. Quantile spectral analysis fundamentally changes this view
because it distinguishes between the effects of cycles at different points of the distribution
of a process and permits a local focus on the parts of the distribution that are most affected
by the cyclical structure.

Spectral analysis has traditionally played an important role in the analysis of economic
time series; see, among many others, Granger (1966), Sargent (1987, chap. 11), Diebold,
Ohanian, and Berkowitz (1998), and Qu and Tkachenko (2011), where the shape of the
sample spectral density is typically taken to be one of the “stylized facts” that the predic-
tions of a model must match. For macroeconomic data, these stylized facts often refer to
high-frequency (seasonal) and low-frequency (business cycle) peaks in the spectrum. How-
ever, both observed data and the posterior distributions of economic models can exhibit
heavy tails (Cogley and Sargent, 2002) that can induce peaks at random in the sample
spectra of the data and the model output, invalidating comparisons between the two. For
financial data, the stylized facts include the absence of auto-correlation, i.e., peakless spec-
tra, and heavy-tailed marginal distributions (Cont, 2001). Stochastic volatility models such
as GARCH processes (Bollerslev, 1986) can cross almost every quantile of their distribution
in a periodic manner and at the same time satisfy these and other stylized facts, leading
the researcher to incorrectly conclude from the spectrum that no periodicity is present.
Bispectra and higher-order spectra can possibly detect cycles in quantile crossings, but
rely on the presumption of light tails since they require the existence of at least third mo-
ments to be well defined and sixth moments to be estimated reliably (see, e.g., Rosenblatt
and Van Ness, 1965). Financial time series such as log-returns of foreign exchange rates
or stock prices may lack finite fourth or even third moments (Loretan and Phillips, 1994;
Longin, 1996).

My proposed approach is robust to each of these concerns: Quantile spectral methods
consistently recover the spectral shape and detect periodicities even in uncorrelated or
heavy-tailed data. Inference about quantile spectra both at fixed frequencies and across
frequencies does not require assumptions about the moments of the process. Although
moment conditions can be used to verify some of the assumptions below, arbitrarily low
fractional moments suffice. Because several common time series models can induce situ-
ations where cycles are present at some but not at all quantiles, I also provide a general
Cramér-von Mises specification test for peakless quantile spectra. Under conditions that
are routinely imposed in the literature when testing for the absence of peaks, these tests are
distribution-free and, depending on the strength of the assumptions, sometimes even exact
in finite samples. The test remains valid asymptotically under much weaker conditions
when a bootstrap approximation is used.

Several recent papers apply quantiles in spectral or correlogram (auto-correlation) analy-
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sis. Li (2008, 2012) obtains robust spectral estimators via quantile regressions for harmonic
regression models. Although his estimation method is quite different from that developed
here, there is some overlap in our results. I provide a detailed discussion in section 3.
Katkovnik (1998) relies on the same idea as Li (2008), but only works with sinusoidal
models and iid noise. Linton and Whang (2007) introduce the “quantilogram,” a correl-
ogram that is essentially the inverse Fourier transform of a quantile spectrum, but their
focus is on testing for directional predictive ability of financial data in the time domain,
rather than spectral analysis. Chung and Hong (2007) test for directional predictive ability
with the generalized spectrum (Hong, 1999) by investigating the frequency domain behav-
ior of processes around a given threshold. This approach is similar in spirit to quantile
spectral analysis but, as Linton and Whang point out, Chung and Hong rescale their data
with sample standard deviations but do not account for the randomness introduced by the
rescaling in the derivation of their tests. In contrast, the scaling of the data for quantile
spectral analysis is provided automatically through the marginal quantile function and all
of my results are derived under the assumption that these quantiles are estimated.

Other robust spectral methods are discussed by Kleiner and Martin (1979) and Klüppel-
burg and Mikosch (1994): Kleiner and Martin focus on time series where the dependence
structure is accurately captured by an autoregressive model of sufficiently high order.
Quantile spectral analysis differs from these methods in that it is completely nonpara-
metric and, most importantly, it robustly estimates cyclical components even when an
autoregression is not an appropriate model for the data. Klüppelburg and Mikosch robus-
tify classical spectral estimates by a self-normalization procedure to estimate normalized
spectra under arbitrarily weak fractional moments conditions. However, their results are
of limited use for applications because little is known about the asymptotic distribution
of their procedures. In contrast, I show that quantile spectral estimates have relatively
simple asymptotic distributions even when no moments exist.

After completing the first draft of this manuscript (Hagemann, 2011), the papers by
Dette, Hallin, Kley, and Volgushev (2011) and Lee and Subba Rao (2011) became available.
Both describe methods based on analyzing cross-covariances of quantile hits and copulas in
the frequency domain that are similar to the quantile spectral estimators presented here.
However, both Dette et al. and Lee and Subba Rao develop their methods as alternatives
to the generalized spectrum to discover the presence of any type of dependence structure
in time series data. My estimators are constructed to identify cyclical dependence.

The remainder of the paper is organized as follows: Section 2 discusses quantile spectral
analysis and introduces two classes of estimators. Section 3 establishes the asymptotic
validity of the estimators under weak regularity conditions. In section 4, I show the consis-
tency of Cramér-von Mises tests for peakless spectra. The Monte Carlo experiments and
an empirical example in section 5 illustrate the finite sample properties of the estimators
and tests. Section 6 concludes. The Appendix contains auxiliary results and proofs.

I use the following notation throughout the paper: 1{·} and 1{·} both represent the
indicator function and ‖X‖p denotes (E|X|p)1/p; ‖ · ‖ abbreviates ‖ · ‖2. Limits are as
n → ∞ unless otherwise noted and convergence in distribution is indicated by  . The
inner product 〈·, ·〉Π and norm ‖ · ‖Π are defined at the beginning of section 4.
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2. Quantile Spectra and Two Estimators

This section introduces quantile spectral density estimation as a robust complement to
classical spectral methods. Spectral analysis aims to reveal periodic behavior in a station-
ary time series Xt with auto-covariance function γX(j) := EX0Xj − (EX0)2 at lag j by
estimating the spectrum or spectral density at frequency λ, defined as

fX(λ) =
1

2π

∑
j∈Z

γX(j) cos(jλ), λ ∈ (−π, π]. (2.1)

The auto-covariance function is typically taken to be absolutely summable to ensure that
fX is continuous and symmetric about 0; a stochastic process that does not possess at
least finite second moments cannot be meaningfully analyzed by the spectrum. If fX has
a peak at λ, then Xt is expected to repeat itself on average after 2π/λ units of time; for
example, a monthly time series with a peak in the spectrum at 2π/3 has a three-month
cycle, with a higher value of fX corresponding to a more pronounced cycle. The primary
goal of this paper is to develop spectral methods that go a step beyond summarizing the
average impact of cycles by distinguishing between the effects of cycles at different points
of the distribution of Xt.

The central idea is that if a stationary process (Xt)t∈Z contains cycles, then its real-
izations will tend to stay above or below a given threshold in an approximately periodic
manner. The pattern in which the process crosses a threshold at the center of its dis-
tribution reflects the most prominent cycles, but provides little information about their
relative sizes. Patterns in threshold crossings near the extremes of the distribution help
to identify amplitudes of these cycles and also recover periodicities that are obscured at
the center of the distribution. The quantiles of Xt, arising from the quantile function
ξ0(τ) := inf{x : P(X0 ≤ x) ≥ τ}, are natural choices for such thresholds because they
give precise meaning to the notion of the center and extremes of a distribution. Spectral
analysis of quantile crossing patterns can then discover cycles in the process and reveal the
extent to which they are present at a given quantile without relying on moments.

To formalize this idea, pick probabilities τ ∈ (0, 1) corresponding to the marginal quan-
tiles ξ0(τ) of Xt. The variable of interest for the analysis is

Vt(τ, ξ) = τ − 1{Xt < ξ}, (τ, ξ) ∈ (0, 1)× R,

such that Vt(τ) := Vt(τ, ξ0(τ)) takes on the value τ − 1 if Xt is below its τ -th quantile at
t, and τ otherwise. Here the quantiles are not assumed to be known, which enables the
researcher to choose the values of τ according to the amount and nature of information
that is needed about the cyclical structure of the time series. For example, τ = 0.5
only analyzes fluctuations about the median, whereas varying τ between 0.5 and 0.9 also
provides information about the positive amplitudes by including values in the upper tail
of the process.
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If the distribution function of Xt is continuous and increasing at ξ0(τ), then the τ -
th quantile crossing indicator Vt(τ) is a bounded, stationary, mean-zero random variable
with auto-covariance function rτ (j) := γV (τ)(j) = EV0(τ)Vj(τ). Periodicities in Vt(τ) are
summarized by peaks in its spectral density

gτ (λ) := fV (τ)(λ) =
1

2π

∑
j∈Z

rτ (j) cos(jλ), (2.2)

which I refer to as the τ -th quantile spectrum or τ -th quantile spectral density in the sequel.
Analyzing gτ across a grid of probabilities τ ∈ (0, 1) therefore reveals cycles in events of
the form {Xt < ξ0(τ) : t ∈ Z}, which in turn summarize (Xt)t∈Z with arbitrary precision
as long as the grid is fine enough.

As the next two examples show, quantile spectral analysis can in fact yield additional in-
sights beyond classical spectral analysis; Linton and Whang (2007) consider similar models.
I discuss estimation of quantile spectra below.

Example 2.1 (Stochastic volatility). Let (εt)t∈Z be a sequence of iid mean-zero random
variables and suppose the data are generated by the stochastic volatility model Xt =
ξ0(τ0) + εtv(εt−1, εt−2, . . . ) for some τ0 ∈ (0, 1), where v > 0 is a measurable function
that drives the volatility of the process. If Xt has finite second moments, then it is an
uncorrelated time series and its spectrum contains no information about the dependence
structure beyond that it is “flat,” i.e., fX(λ) = γX(0)/(2π) at all frequencies.

Similarly, any stationary time series with a continuous and increasing distribution func-
tion at ξ0(τ) satisfies rτ (0) = τ(1 − τ) and the stochastic volatility process also has the
property that

rτ0(j) = EV0(τ0)
(
τ0 − P(Xj < ξ0(τ0) | εj−1, . . . )

)
=
(
τ0 − P(εj < 0)

)
EV0(τ0) = 0

for all j > 0. Therefore its τ0-th quantile spectrum will also flat in the sense that gτ0(λ) ≡
τ0(1 − τ0)/(2π). However, the other quantile spectra of the stochastic process will be
informative because rτ (j) generally does not vanish for τ 6= τ0. �

Example 2.2 (QAR). Now let (εt)t∈Z be a sequence of independent Uniform(0, 1) variables
and consider the second-order quantile autoregressive (QAR(2)) process of Koenker and
Xiao (2006),

Xt = β0(εt) + β1(εt)Xt−1 + β2(εt)Xt−2 = E(β1(ε0))Xt−1 + E(β2(ε0))Xt−2 + Yt,

where Yt = β0(εt) + [β1(εt) − E(β1(ε0))]Xt−1 + [β2(εt) − E(β2(ε0))]Xt−2. Here β0, β1, and
β2 are unknown functions that satisfy regularity conditions that ensure stationarity and
Xt is assumed to be increasing in εt conditional on Xt−1, Xt−2. Provided that its second
moments exist, the sequence (Yt)t∈Z has no influence on the shape of the spectrum because
it is an uncorrelated sequence that is also uncorrelated with the other variables on the
right-hand side of the preceding display (Knight, 2006). Hence, if Eβ1(ε0) = Eβ2(ε0) = 0,
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the spectrum of Xt satisfies fX(λ) ≡ γY (0)/(2π) and classical spectral analysis cannot
reveal anything about cycles in Xt. If Eβ1(ε0) and Eβ2(ε0) are nonzero, then the spectrum
of Xt is the same as that of an AR(2) process with the same mean and covariances as the
QAR(2). If, instead, there is some τ0 ∈ (0, 1) such that β1(τ0) = β2(τ0) = 0, then the
τ0-th quantile spectrum is also flat (see Example 4.3 below), but cycles can be recovered
at other quantiles. Further, the quantile spectra of the QAR(2) process and those of an
AR(2) process with the same mean and covariance structure will generally be different.�

For a given sample Sn := {Xt : t = 1, . . . , n}, I consider two estimators of the quan-
tile spectrum that correspond to the periodograms and smoothed periodograms used in
classical spectral analysis. The key difference from the classical case is that the variable
of interest Vt(τ) is indexed by the unknown quantity ξ0(τ) and therefore itself has to be
estimated. To this end, let ξ̂n(τ) be the τ -th sample quantile determined implicitly by
solutions to the minimization problem

min
x∈R

n∑
t=1

ρτ (Xt − x),

where ρτ (x) := x(τ − 1{x < 0}) is the Koenker and Bassett (1978) check function. Let
V̂t(τ) := Vt(τ, ξ̂n(τ)) be the estimate of Vt(τ). The τ -th quantile periodogram is then the
“plug-in” estimator

Qn,τ (λ) :=
1

2π

∣∣∣n−1/2

n∑
t=1

V̂t(τ)e−itλ
∣∣∣2 =

1

2π

∑
|j|<n

r̂n,τ (j) cos(jλ), (2.3)

where i :=
√
−1 and r̂n,τ (j) := n−1

∑n
t=|j|+1 V̂t(τ)V̂t−|j|(τ) for |j| < n. As I will show in the

next section, the quantile periodogram inherits the properties of the classical periodogram
in the sense that it allows the construction of valid confidence intervals, but does not
provide consistent estimates for the spectrum of interest.

Consistent estimation of the quantile spectrum requires additional smoothing to assign
less weight to the imprecisely estimated auto-covariances with lags |j| near n. For this I ap-
ply the Parzen (1957) class of kernel spectral density estimators to the present framework.
The estimators, which I refer to as smoothed τ -th quantile periodograms, are given by

ĝn,τ (λ) =
1

2π

∑
|j|<n

w(j/Bn)r̂n,τ (j) cos(jλ), (2.4)

where Bn is a scalar “bandwidth” parameter that grows with n at a rate specified in
Theorem 3.6 below, and w is a real-valued smoothing weight function from the set

W :=
{
w is bounded and continuous, w(x) = w(−x) ∀x ∈ R,

w(0) = 1, w̄(x) := supy≥x |w(y)| satisfies
∫∞

0
w̄(x) dx <∞,

W (λ) := (2π)−1
∫∞
−∞w(x)e−ixλ dx satisfies

∫∞
−∞ |W (λ)| dλ <∞

}
.
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In the literature, w and W are usually called the lag window and spectral window, respec-
tively. Both functions are also often referred to as kernels, although w does not necessarily
integrate to one.

Remarks. 1. The class W includes most of the kernels that are used in practice, for exam-
ple the Bartlett (i.e., triangular), Parzen, Tukey-Hanning, Daniell, and quadratic-spectral
windows. However, it excludes the truncated (also known as rectangular or Dirichlet)
window. See Andrews (1991) and Brockwell and Davis (1991, pp. 359-362) for thorough
descriptions of these windows and their properties. I provide a brief discussion on how to
choose w and Bn at the end of the next section.

2. The restriction
∫∞

0
w̄(x) dx < ∞ is not standard in the spectral density estimation

literature. As pointed out by Jansson (2002), it is needed for asymptotic bounds on ex-
pressions such as B−1

n

∑
|j|<n |w(j/Bn)| that typically arise in consistency proofs of spectral

density estimates indexed by estimated parameters; see also Robinson (1991).
3. Spectra are non-negative. It is therefore common practice to choose a window such

that W ≥ 0 to ensure non-negativity of the spectral density estimate; see, e.g., Andrews
(1991) and Smith (2005). The condition

∫∞
−∞ |W (λ)| dλ < ∞ is immediately satisfied for

such windows in view of the inverse Fourier transform w(x) =
∫∞
−∞ e

ixλW (λ) dλ, which

implies
∫∞
−∞W (λ) dλ = w(0) = 1 for w ∈ W. The Tukey-Hanning window is an example

of a window that satisfies
∫∞
−∞ |W (λ)| dλ <∞, but not W ≥ 0.

The next section characterizes the asymptotic properties of the quantile and smoothed
quantile periodograms.

3. Asymptotic Properties of Quantile and Smoothed Quantile Periodograms

In this section I construct confidence intervals for the quantile spectrum and establish
the consistency of the smoothed quantile periodogram under regularity conditions. I also
compare the quantile periodogram to the periodograms of Li (2008, 2012).

Throughout the remainder of the paper I assume that (Xt)t∈Z is a nonlinear process of
the form

Xt = Y (εt, εt−1, εt−2, . . . ), (3.1)

where (εt)∈Z is a sequence of iid copies of a random variable ε and Y is a measurable,
possibly unknown function that transforms the input Ft := (εt, εt−1, . . . ) into the output
Xt. The class (3.1) includes a large number of commonly-used stationary time series
models. For instance, the processes in Examples 2.1 and 2.2 are of this form; I provide
other examples below Proposition 3.1 in this section.

The essential conditions for the estimation of spectra are restrictions on the memory
of the time series. As pointed out by Wu (2005), for time series of the form (3.1) such
restrictions are most easily implemented by comparing Xt to a slightly perturbed version
of itself. Let (ε∗t )t∈Z be an iid copy of (εt)t∈Z, so that the difference between Xt and
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X ′t := Y (εt, . . . , ε1, ε
∗
0, ε
∗
−1, . . . ) are the inputs before time t = 1. Define Xτ (δ) := {ξ ∈ R :

|ξ0(τ)− ξ| ≤ δ} and assume the following:

Assumption A. For a given τ ∈ (0, 1), there exist δ > 0 and σ ∈ (0, 1) such that

sup
ξ∈Xτ (δ)

‖1{Xn < ξ} − 1{X ′n < ξ}‖ = O(σn).

Intuitively, this condition requires the probability that Xn is below but X ′n is above a
given threshold (or vice versa) to be sufficiently small for large n as long as the threshold
is near ξ0(τ). It is the only dependence condition needed to construct asymptotically valid
confidence intervals for the quantile spectrum. Assumption A avoids restrictions on the
summability of the cumulants (Brillinger, 1975, pp. 19-21) of Xt that are routinely imposed
in the spectral estimation literature; see Andrews (1991) and the references therein. Cu-
mulant conditions or “mixing” assumptions (Rosenblatt, 1984) that imply such conditions
are sometimes difficult to establish for a given time series model and can easily fail or put
unwanted restrictions on the parameter space when Xt is, for example, generated by a
standard GARCH process (Bollerslev, 1986).

Assumption A does not require the existence of any moments of Xt, but can be verified
for most commonly-used stationary time series models at the expense of an arbitrarily weak
moment restriction via the geometric moment contracting (GMC) property introduced by
Hsing and Wu (2004). A time series of the form (3.1) is said to be GMC for some α > 0
if ‖Xn −X ′n‖α = O(%n) for some % ∈ (0, 1), where % may depend on α.

Proposition 3.1. Assumption A is satisfied if FX(x) := P(X0 ≤ x) is Lipschitz continuous
in a neighborhood of ξ0(τ) and ‖Xn −X ′n‖α = O(%n) for some α > 0 and % ∈ (0, 1).

The GMC property is satisfied for stationary (causal) ARMA, ARCH (Engle, 1982),
GARCH, ARMA-ARCH, ARMA-GARCH, asymmetric GARCH (Ding, Granger, and En-
gle, 1993; Ling and McAleer, 2002), generalized random coefficient autoregressive (Bougerol
and Picard, 1992), and QAR models; see Shao and Wu (2007) and Shao (2011b) for proofs
and more examples. By Proposition 3.1, all of these models are included in the analysis if
FX is Lipschitz near ξ0(τ)—a condition that is also needed for all of my results.

In addition to Lipschitz continuity, a restriction on FX is required to ensure both that
Vt(τ) can be estimated consistently and that

√
n(ξ̂n(τ)− ξ0(τ)) is bounded in probability:

Assumption B. FX is Lipschitz continuous in a neighborhood of ξ0(τ) and has a positive
and continuous (Lebesgue) density at ξ0(τ).

This assumption, or slight variations thereof, is standard in the quantile estimation and
regression literature; see, e.g., Koenker (2005, p. 120) and Wu (2007).

As a preliminary step towards inference about quantile spectra, the following result
establishes the joint asymptotic distribution of the quantile periodogram on a subset of
the natural frequencies . . . ,−4π/n,−2π/n, 0, 2π/n, 4π/n, . . . ⊂ (−π, π]. More precisely,
Theorem 3.2 shows that the usual convergence of the periodogram at different frequencies to
independent exponential variables is not affected by the presence of the estimated quantile
ξ̂n(τ).
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Theorem 3.2. Suppose Assumptions A and B hold for some τ ∈ (0, 1). Let λn = 2πjn/n
with jn ∈ Z be a sequence of natural frequencies such that λn → λ ∈ (0, π) with gτ (λ) > 0.
Then, for any fixed k ∈ Z, the collection of quantile periodograms

Qn,τ

(
λn − 2πk/n

)
, Qn,τ

(
λn − 2π(k − 1)/n

)
, . . . , Qn,τ

(
λn + 2πk/n

)
converges jointly in distribution to independent exponential variables with mean gτ (λ).

Remarks. 1. The natural frequencies induce invariance to centering in the quantity inside
the modulus in (2.3) so we can write

n−1/2

n∑
t=1

V̂t(τ)e−itλn = −n−1/2

n∑
t=1

(
1{Xt < ξ̂n(τ)} − FX

(
ξ̂n(τ)

))
e−itλn .

Given the invariance, the strategy for the proof is to show that the empirical process on
the right-hand side of the preceding display is stochastically equicontinuous with respect
to an appropriate semi-metric on bounded sets near ξ0(τ). For this I extend Andrews
and Pollard’s (1994) functional limit theorems to time series of the form (3.1) that satisfy
Assumption A. The equicontinuity property and a result of Shao and Wu (2007) on classical
periodograms at natural frequencies then yield the desired results.

2. If a quantile of interest ξ0(τ) is assumed to be known, for example ξ0(0.5) = 0 as in
Li (2008), then Theorem 3.2 remains valid when (i) ξ0(τ) is used in Qn,τ instead of ξ̂n(τ),
(ii) Assumption B is replaced by the condition that FX is continuous and increasing at
ξ0(τ), and (iii) Assumption A is replaced by Assumption C below with δ = 0. This is a
direct consequence of Shao and Wu’s (2007) Corollary 2.1.

Theorem 3.2 yields a convenient way to construct point-wise confidence intervals for
the quantile spectrum. The proof follows immediately from the properties of independent
exponential variables. Example 3.4 provides an application.

Corollary 3.3. Suppose the conditions of Theorem 3.2 are satisfied. Define Q̄n,τ (λ, k) =∑
|j|≤kQn,τ (λn + 2πj/n)/(2k + 1), and let χ2

4k+2,α be the α-th quantile of a χ2 distribution
with 4k + 2 degrees of freedom. Then, for every fixed k ∈ Z, the probability of the event

gτ (λ) ∈
(

(4k + 2)Q̄n,τ (λ, k)

χ2
4k+2,1−α/2

,
(4k + 2)Q̄n,τ (λ, k)

χ2
4k+2,α/2

)
converges to 1− α.

Example 3.4 (Testing for periodicities). The processes in Examples 2.1 and 2.2 are in-
stances where Vt(τ0) is a white noise series for some τ0 ∈ (0, 1). Then the τ0-th quantile
spectrum of Xt is τ0(1− τ0)/(2π) at all frequencies and therefore contains no periodicities
at that quantile. Because a spike in the periodogram could either be evidence for a period-
icity or an artifact generated by the sample, this leads to the problem of testing whether
the τ0-th quantile spectrum behaves like a flat quantile spectrum at a given frequency.
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By Corollary 3.3, this hypothesis can be rejected at level α if the confidence interval in
the Corollary does not contain τ0(1 − τ0)/(2π). The same type of test is not as simple in
classical spectral analysis because (2.1) reduces to the unknown quantity γX(0)/(2π) if Xt

is white noise. I extend the idea of testing for flatness in section 4 to provide a test for the
more general hypothesis that gτ0(λ) = τ0(1− τ0)/(2π) jointly across all frequencies. �

The results stated in Theorem 3.2 and its Corollary overlap to some extent with Theorem
2 of Li (2008). He uses the least absolute deviations estimator in the harmonic regression
model

β̂n(λ) = arg min
(b1,b2)>∈R2

n∑
t=1

ρ0.5

(
Xt − cos(tλ)b1 − sin(tλ)b2

)
,

to define the Laplace periodogram Ln(λ) = n|β̂n(λ)|2/4. In the special case that the time
series of interest satisfies Xt = cos(tλ0)β1 + sin(tλ0)β2 + εt, where λ0, β1, and β2 are
unknown constants, this approach has the advantage that the maximizer of Ln(λ) can
be used as a robust estimator of λ0, although Li provides only Monte Carlo evidence of
this assertion. For general time series, he assumes that Xt has median zero and a density
F ′X with F ′X(0) > 0, and that certain short-range dependence conditions are satisfied. The

proofs of his Theorems 1 and 2 then yield an asymptotically linear representation for β̂n(λn)
that can be used to show

Ln(λn) = F ′X(0)−2
∣∣∣n−1/2

n∑
t=1

V̂t(0.5)e−itλn
∣∣∣2 + op(1).

The first term on the right-hand side is 2π/F ′X(0)2 times the quantile periodogram evalu-
ated at the median. Hence, if the median of Xt is indeed zero, the Laplace periodogram
and the quantile periodogram at the median are asymptotically equivalent up to the un-
known constant 2π/F ′X(0)2. Li (2012) extends his idea of harmonic median regression to
quantile regression.

Using Li’s (2008, 2012) periodograms instead of the quantile spectral methods introduced
in my paper has the following disadvantages: (i) All of Li’s asymptotic results depend on
terms of the form τ(1− τ)/F ′X(ξ(τ))2 that in his case must be estimated to make inference
about the dimensionless quantity gτ (λ) even for simple tests such as in Example 3.4; my
approach avoids this complication altogether. (ii) Li’s methods require quantile regression
at every frequency, whereas the quantile periodogram (2.3) can be computed easily with the
Fast Fourier Transform. (iii) Li does not provide consistent estimators. For example, Ln(λ)
converges to a distribution with asymptotic mean [2π/(4F ′X(0)2)]×g0.5(λ), but Li does not
establish that a smoothed version of Ln(λ) converges in probability to this quantity. In
contrast—as I will show now—the quantile periodogram can be smoothed by standard
methods to provide uniformly consistent estimates of gτ .

Consistent estimation of the quantile spectrum requires weaker conditions than the con-
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struction of confidence intervals because much of the randomness introduced by replacing
rτ (as defined above (2.2)) with r̂n,τ is now controlled by the smoothing weight function
w. Let ε∗0 be an iid copy of ε0 such that Xt and X∗t := Y (εt, . . . , ε1, ε

∗
0, ε−1, . . . ) differ only

through the input at time t = 0. I assume Xt satisfies the following:

Assumption C. For a given τ ∈ (0, 1) and Xτ (δ) as in Assumption A, there exists a δ > 0
such that

∞∑
t=0

sup
ξ∈Xτ (δ)

‖1{Xt < ξ} − 1{X∗t < ξ}‖ <∞.

Remarks. 1. Assumption A implies Assumption C in view of the relation ‖1{X ′n < ξ} −
1{X∗n < ξ}‖ = ‖1{X ′n+1 < ξ}−1{Xn+1 < ξ}‖; see the discussion below equation [13] of Wu
(2005). For ξ near ξ0(τ), adding and subtracting 1{X ′n < ξ} and the triangle inequality
then yield ‖1{Xn < ξ} − 1{X∗n < ξ}‖ = O(σn), which remains valid after taking suprema
over Xτ (δ).

2. A stationary stochastic process is usually called short-range dependent if its auto-
covariance function is summable. Since Xt can have heavy tails, this definition no longer
has the desired meaning. However, Remark 2.1 of Shao (2011a) can be used to show that
Vt(τ) is short-range dependent because

∑
j∈Z

|rτ (j)| ≤
( ∞∑
t=0

‖1{Xt < ξ0(τ)} − 1{X∗t < ξ0(τ)}‖
)2

<∞,

provided Assumptions A or C hold. This suggests that these assumptions should still be
regarded as short-range dependence conditions on Xt. Heyde (2002) argues similarly to
quantify the dependence of the increments of certain Gaussian processes.

Assumption C is easily verified in most cases via Proposition 3.1. However, more direct
arguments can also be useful:

Example 3.5 (Linear processes with Cauchy innovations). Consider the linear process
Xt =

∑∞
j=0 ajεt−j, where (aj)j∈N is a sequence of constants and (εt)t∈Z is an sequence of

iid copies of a standard Cauchy random variable. Without loss of generality, let a0 = 1.
Write Fε for the distribution function of ε; then Xt has distribution function FX(x) =
EFε(x−

∑∞
j=1 ajεt−j) and therefore also possesses a bounded density F ′X by the Lebesgue

Dominated Convergence Theorem. Furthermore, apply the point-wise inequality |1{Xn <
ξ} − 1{X∗n < ξ}| ≤ 1{|Xn − ξ| < |Xn −X∗n|}, then the Mean Value Theorem and P(|ε0|+
|ε∗0| ≥ x) ≤ P(|ε0| ≥ x/2) + P(|ε∗0| ≥ x/2) for any fixed x to see that

‖1{Xn < ξ} − 1{X∗n < ξ}‖2 ≤ P(|Xn − ξ| < |an||ε0 − ε∗0|)
≤ P(|X0 − ξ| ≤ |an|1/2) + P(|an||ε0 − ε∗0| ≥ |an|1/2)

≤ 2|an|1/2 sup
x∈R

F ′X(x) + 2P(|ε0| ≥ |4an|−1/2),
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which is O(|an|1/2) because the tail probability P(|ε0| > x) of a Cauchy random variable is
proportional to x−1 as x→∞. Because these bounds hold uniformly in ξ, take square roots
in the preceding display to conclude that Assumption C is satisfied if

∑∞
j=0 |aj|1/4 < ∞.

The same type of reasoning can be used more generally when the innovations come from
a smooth distribution whose tails behave algebraically. Proposition 3.1 does not apply
because (an)n∈N does not necessarily vanish at a geometric rate. �

Theorem 3.6 below establishes uniform consistency of the smoothed quantile periodogram
under the condition that the bandwidth Bn grows at a sufficiently slow rate. In particu-
lar, due to the uniformity, Theorem 3.6 allows for both fixed frequencies and sequences of
frequencies such as the natural frequencies above.

Theorem 3.6. If Assumptions B and C hold for some τ ∈ (0, 1), w ∈ W, Bn → ∞, and
Bn = o(

√
n), then

ĝn,τ (λ)
p→ gτ (λ)

uniformly in λ ∈ (−π, π].

Remarks. 1. The proof of Theorem 3.6 relies in part on recent results for classical spectral
density estimates obtained by Liu and Wu (2010).

2. At fixed frequencies, kernel spectral density estimates of differentiable functions are
often valid for bandwidths up to order Bn = o(n); see, e.g., Andrews (1991) and Davidson
and de Jong (2000). The stronger requirement Bn = o(

√
n) reflects that V̂t(τ) is not a

smooth function of ξ̂n(τ). However, this requirement is not much of a restriction because,
as Andrews notes, optimal bandwidths are typically of order less than

√
n.

3. If the quantile of interest ξ0(τ) is assumed to be known, then Theorem 1 of Liu and Wu
(2010) implies that Theorem 3.6 continues to hold when (i) ξ0(τ) is used in the definition
of ĝn,τ instead of ξ̂n(τ), (ii) Assumption B is replaced the condition that FX is continuous
and increasing at ξ0(τ), (iii) δ = 0 in Assumption C, and (iv) Bn = o(n).

4. The smoothed quantile periodogram at a known quantile ξ0(τ) is just an ordinary
smoothed periodogram of Vt(τ) and therefore optimality results from classical spectral
analysis apply. In particular, the optimal lag window among the kernels in W ∩ {W ≥ 0}
with respect to the relative mean-square error (MSE) criterion of Priestley (1962) is the
quadratic-spectral (QS) window

wQS(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

The mean-square optimal bandwidth for the QS kernel is Bn = O(n1/5), which can be
established under additional dependence conditions; for example, Assumption A with δ = 0
suffices. In the general case where ξ0(τ) is estimated, a truncated MSE criterion as in
Andrews (1991) could be used to limit the influence of ξ̂n(τ). However, his results rely
crucially on second-order differentiability of the smoothed periodogram with respect to the
estimated parameter. A fundamentally different approach is therefore likely to be needed,
which I leave for future research.
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I investigate the finite sample properties of the smoothed quantile periodogram and
confidence intervals based on the quantile periodogram in a small simulation study in
section 5. The next section discusses the use of integrated quantile periodograms to test
for uninformative quantile spectra.

4. Testing for Flatness of a Quantile Spectrum

In this section I provide two Cramér-von Mises tests (Procedures 4.4 and 4.6 below) for the
null hypothesis that the τ -th quantile spectrum is flat, i.e., gτ (λ) ≡ τ(1− τ)/(2π), against
the alternative that the τ -th quantile spectrum is informative.

If the distribution function of Xt is continuous and increasing at ξ0(τ), then rτ (0) =
τ(1− τ) and the null and alternative hypotheses can be stated more precisely as

H0 : rτ (j) = 0 for all j > 0 and H1 : rτ (j) 6= 0 for some j > 0.

Provided that
∑

j∈Z rτ (j) converges absolutely, the τ -th quantile spectrum is symmetric
about zero. One way to test for the null hypothesis is therefore to check if the sample
equivalent of ∫ λ

0

gτ (u) du−
∫ λ

0

rτ (0)

2π
du =

∑
j>0

rτ (j)ψj(λ), (4.1)

where ψj(λ) := sin(jλ)/(πλ), is near zero for all λ ∈ Π := [0, π].
The quantity in the preceding display is best understood as an function in L2(Π), the set

of Lebesgue-measurable functions f : Π→ R with
∫

Π
f(λ)2 dλ <∞. Under the equivalence

relation “f ≡ g if and only if f = g Lebesgue-almost everywhere,” L2(Π) is a proper
Hilbert space with inner product 〈f, g〉Π :=

∫
Π
f(λ)g(λ) dλ for f, g ∈ L2(Π) and norm

‖f‖Π :=
√
〈f, f〉Π. Since ‖ψj‖2

Π = 1/(2πj2) for all j ∈ Z \ {0}, (4.1) indeed lies in L2(Π)
and satisfies ∥∥∥∥∑

j>0

rτ (j)ψj

∥∥∥∥2

Π

=
∑
j>0

rτ (j)
2‖ψj‖2

Π.

Here we need the fact that 〈ψj, ψk〉Π = 0 for all j 6= k. Now replace rτ (j) by r̂n,τ (j) and
rescale to obtain the Cramér-von Mises statistic

CM n,τ :=

∥∥∥∥√n n−1∑
j=1

r̂n,τ (j)ψj

∥∥∥∥2

Π

=
n

2π

n−1∑
j=1

(
r̂n,τ (j)

j

)2

based on the random process Sn,τ (λ) :=
√
n
∑n−1

j=1 r̂n,τ (j)ψj(λ) in L2(Π). No smoothing
weight function and bandwidth is needed because the integral in (4.1) already acts as a
smoothing operator. The scaling factor

√
n in Sn,τ is included because

√
nr̂n,τ (j) can be
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expected to have an asymptotically normal distribution for each j > 0 under the null
hypothesis. When viewed as a random function on L2(Π), the process Sn,τ (λ) should then
converge in distribution to a mean-zero Gaussian process Sτ (λ) with covariances

ESτ (λ)Sτ (λ
′) =

∑
j>0

∑
k>0

∑
l∈Z

Cov
(
V0(τ)Vj(τ), Vj−l(τ)Vj−l−k(τ)

)
ψj(λ)ψk(λ

′), (4.2)

λ, λ′ ∈ Π, so that CM n,τ  ‖Sτ‖2
Π by the Continuous Mapping Theorem (see, e.g., Theo-

rem 18.11 of van der Vaart, 1998, p. 259).
As the following theorem shows, this convergence indeed occurs if the conditions of the

null hypothesis are strengthened slightly: Suppose that under H0, for a given τ ∈ (0, 1)
there is a δ > 0 such that

P(X0 < ξ,Xj < ξ′) = P(X0 < ξ)P(X0 < ξ′) for all j > 0 and all ξ, ξ′ ∈ Xτ (δ), (4.3)

where Xτ (δ) = {ξ ∈ R : |ξ0(τ)− ξ| ≤ δ} as before. The role of this condition is discussed
in detail in the remarks and examples below.

Theorem 4.1. Suppose Assumptions A and B hold for some τ ∈ (0, 1).
(i) If H0 is satisfied in the sense of (4.3), then CM n,τ  ‖Sτ‖2

Π, and
(ii) if H1 is satisfied, then P(CM n,τ > B)→ 1 for every B ∈ R.

Remarks. 1. For the proof of the theorem, I show stochastic equicontinuity of the empirical
process (n− j)−1/2

∑n−j
j=1 [Vt(τ, ξ)Vt+j(τ, ξ)−EV0(τ, ξ)Vj(τ, ξ)] indexed by ξ under Assump-

tions A and B for each fixed j. Condition (4.3) is used to control the behavior of r̂n,τ (j) for
large j and n. These two results then allow me to apply a general result on Cramér-von
Mises tests for spectral densities given in Shao (2011a).

2. Condition (4.3) imposes slightly more on the dependence structure of Vt(τ) than the
white noise assumption H0 (i.e., δ = 0). However, since δ can be chosen to be as small
as desired, it is much less restrictive than requiring that (Xt)t∈Z be pairwise independent
(δ = ∞) or even iid, which is frequently imposed when testing for white noise; see, e.g.,
Milhøj (1981) and Hong (1996).

Example 4.2 (Stochastic volatility, continued). Recall that Fε is the distribution function
of ε. The stochastic volatility process in Example 2.1 has a flat τ0-th quantile spectrum
but fails to satisfy (4.3) because

P(X0 < ξ,Xj < ξ′) = E1

{
ε0 <

ξ − ξ0(τ0)

v(ε−1, . . . )

}
Fε

(
ξ′ − ξ0(τ0)

v(εj−1, . . . )

)
can generally not be simplified further due to the lagged innovations contained in the
volatility process v. Thus, Theorem 4.1 does not apply. However, the test procedure
from Example 3.4 can still be used in this case to test for flatness of the τ0-th quantile
spectrum, for if gτ0(λ0) = τ0(1−τ0)/(2π) is rejected at some frequency λ0, then H1 must be
true. Linton and Whang (2007) investigate the stochastic volatility model of Example 2.1

14



with the sample quantilogram, defined as r̂n,τ (j)/r̂n,τ (0), for a fixed, finite number of lags
j = 1, 2, . . . . From their results it can be seen that the failure of (4.3) for the stochastic
volatility model manifests itself in terms of a non-vanishing drift term in

√
nr̂n,τ (j) due to

the estimation of ξ0(τ). A Cramér-von Mises test requires control of these drifts for large
j and n; this is nontrivial and left for future work. �

Example 4.3 (QAR, continued). The QAR process in Example 2.2 possesses a flat τ0-th
quantile spectrum and has the property (4.3) if there exists a neighborhood T of τ0 such
that β1(τ) = β2(τ) = 0 for all τ ∈ T: In this case, the conditional quantile function,
defined as the solution ξ(τ | Ft−1) of P(Xt ≤ ξ | Ft−1) = τ , is given by ξ(τ | Ft−1) =
β0(τ) + β1(τ)Xt−1 + β2(τ)Xt−2 = β0(τ) almost surely for all τ ∈ T by monotonicity. Take
expectations to deduce that

τ = P
(
Xt ≤ ξ(τ | Ft−1) | Ft−1

)
= P

(
Xt ≤ β0(τ)

)
= P

(
X0 ≤ ξ0(τ)

)
,

almost surely for all τ ∈ T and therefore ξ(τ | Ft) = ξ0(τ) almost surely on τ ∈ T. Conclude
that for any τ, τ ′ ∈ T,

P
(
X0 < ξ0(τ), Xj < ξ0(τ ′)

)
= E1{X0 < ξ0(τ)}P

(
Xj < ξ0(τ ′) | Fj−1

)
= P

(
X0 < ξ0(τ)

)
P
(
X0 < ξ0(τ ′)

)
.

Now (4.3) follows because as long as FX is continuous and increasing in a neighborhood
of ξ0(τ0), there is a δ > 0 such that for every ξ, ξ′ ∈ Xτ0(δ), there are τ, τ ′ ∈ T such that
ξ = ξ0(τ) and ξ′ = ξ0(τ ′). The assertion in Example 2.2 about the flatness of the τ0-th
quantile spectrum is obtained by letting T = {τ0}. �

The main difficulty with applying Theorem 4.1 in practice is the unknown covariance
function (4.2) of the limiting process Sτ . In standard spectral analysis, this has led re-
searchers to assume that Xt is iid normal under the null hypotheses of white noise (Durbin,
1967, is an important early reference) in order to avoid having to estimate the covariance
function of a Gaussian process. In sharp contrast, in quantile spectral analysis the as-
sumption that Xt is iid is already enough to construct a test for flatness without imposing
a distributional assumption: In large samples V̂t(τ) is close to Vt(τ) = τ − 1{Xt < ξ0(τ)}
in probability, but 1{Xt < ξ0(τ)} is a Bernoulli random variable with success probability
τ as long as FX is continuous and increasing at ξ0(τ). Hence, if Xt is indeed iid and
J1, J2, . . . , Jn are independent Bernoulli(τ) variables, then

˜CM n,τ :=
1

2πn

n−1∑
j=1

j−2

( n∑
t=1+j

Vt(τ)Vt−j(τ)

)2

and

CM ′
n,τ :=

1

2πn

n−1∑
j=1

j−2

( n∑
t=1+j

(τ − Jt)(τ − Jt−j)
)2
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have the same distribution. Because CM n,τ = ˜CM n,τ + op(1) under the conditions of
Theorem 4.1(i), this distributional equivalence leads to a simple, distribution-free Monte
Carlo test. I prove its consistency in Corollary 4.5 below.

Procedure 4.4 (Monte Carlo test for flatness). 1. Draw n iid copies J1, J2, . . . , Jn of a
Bernoulli(τ) random variable.

2. Compute CM ′
n,τ with the variables from step 1.

3. Repeat steps 1 and 2 R times. Reject H0 in favor of H1 if CM n,τ is larger than
cn,τ (1− α), the 1− α empirical quantile of the R realizations of CM ′

n,τ .

Remark. Exploiting the distribution-free character of sign or quantile crossing indicators
has a long history in statistics and econometrics; see, e.g., Walsh (1960). More recently,
Chernozhukov, Hansen, and Jansson (2009) use it to construct finite sample confidence
intervals for quantile regression estimators.

By choosing the number of Monte Carlo repetitions R large enough, the quantiles of the
null distribution of ˜CM n,τ can be approximated with arbitrary precision. I therefore let
R → ∞ and define the quantiles of the simulated distribution directly as cn,τ (1 − α) :=
inf{x ∈ R : P( ˜CM n,τ > x) ≤ α}. The large sample properties of Procedure 4.4 can now
be stated as follows:

Corollary 4.5. Suppose Assumption B holds for some τ ∈ (0, 1) and let α ∈ (0, 1).
(i) If (Xt)t∈Z is an iid sequence, then P(CM n,τ > cn,τ (1− α))→ α, and

(ii) if instead Assumption A and H1 are satisfied, then P(CM n,τ > cn,τ (1− α))→ 1.

Remark. If ξ0(τ) is known, then the test in Procedure 4.4 has level α even in finite samples
provided that ˜CM n,τ is used in step 3 instead of CM n,τ .

In cases where it does not seem reasonable to assume that Xt is iid under the null
hypothesis, the block-wise wild bootstrap of Shao (2011a) should be used instead. This
bootstrap is a modification of the standard wild bootstrap (Liu, 1988; Mammen, 1992).
It perturbs whole blocks of observations with iid copies of a random variable η that is
independent of the data and satisfies Eη = 0, Eη2 = 1, and Eη4 < ∞. Since the blocks
grow with the sample size, this eventually captures enough of the dependence structure to
provide critical values for the null distribution under the more general condition (4.3).

Procedure 4.6 (Shao’s block-wise wild bootstrap). 1. Choose a block length bn ≤ n
and the corresponding number of blocks Ln = n/bn, taken to be an integer for
convenience. For each s = 1, . . . Ln define a block Bs = {(s− 1)bn + 1, . . . , sbn}.

2. Draw Ln iid copies η1, η2, . . . , ηLn of η. For each t = 1, . . . , n, define ωt =
∑Ln

s=1 ηs1{t ∈
Bs} so that ωt takes on the value ηs if t lies in the s-th block.

3. Compute r̂∗n,τ (j) := n−1
∑n

t=j+1[V̂t(τ)V̂t−j(τ)− r̂n,τ (j)]ωt and calculate the bootstrap
statistic

CM ∗
n,τ :=

n

2π

n−1∑
j=1

(
r̂∗n,τ (j)

j

)2

.

4. Repeat steps 2 and 3 R times. Reject H0 in favor of H1 if CM n,τ is larger than
c∗n,τ (1− α), the 1− α empirical quantile of the R realizations of CM ∗

n,τ .
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Remark. The recommended choice for η in practice is a Rademacher variable that takes
on the value 1 with probability 1/2 and the value −1 with probability 1/2. Distributions
other than the Rademacher distribution can be used for η, in particular if V̂t(τ)V̂t−j(τ) has
a skewed distribution, but there is no evidence that they would lead to better inference;
see Davidson, Monticini, and Peel (2007) for a discussion of this point for the standard
wild bootstrap.

As before, I take R to be large and define the quantiles of the bootstrap distribution
conditional on the sample Sn as c∗n,τ (1 − α) = inf{x ∈ R : P(CM ∗

n,τ ≤ x | Sn) ≥ 1 − α}.
Procedure 4.6 then has the following asymptotic properties:

Theorem 4.7. Suppose Assumptions A and B hold for some τ ∈ (0, 1). Let α ∈ (0, 1),
bn →∞ and bn/n→ 0.

(i) If H0 is satisfied in the sense of (4.3), then P(CM n,τ > c∗n,τ (1− α))→ α, and
(ii) if H1 is satisfied, then P(CM n,τ > c∗n,τ (1− α))→ 1.

Remark. If ξ0(τ) is known, then Theorems 4.1 and 4.7 remain valid without condition (4.3)
as long as ˜CM n,τ is used in place of CM n,τ .

The next section investigates the finite sample properties of the two Cramér-von Mises
tests, the quantile periodogram, and the smoothed quantile periodogram in a Monte Carlo
study and provides an empirical application.

5. Numerical Results

In this section I present a sequence of examples to illustrate quantile spectral methods in
the context of some familiar time series models and macroeconomic data, and compare the
results to those obtained from traditional spectral analysis.

Example 5.1 (AR(2) with spectral peak). Let (εt)t∈Z be iid copies of an N(0, 1) variable
with distribution function Φ. Li (2008) investigates the frequency domain properties of a
stationary AR(2) process of the form

Xt = β1Xt−1 + β2Xt−2 + εt, β1 = 2× 0.95 cos(2π × 0.22), β2 = −0.952. (5.1)

Shao and Wu’s (2007) Theorem 5.2 implies that Xt is GMC for all α > 0. Since Xt is also
normally distributed, Proposition 3.1 applies and consequently Assumptions A and B hold.
To study the finite sample properties of classical and quantile spectral estimates for sample
sizes n ∈ {300, 600, 900} in this model, I generated 10,000 realizations of the process of
size 400 + n for each n and then discarded the first 400 observations. Each realization was
initialized by independent standard normal random variables. The solid black line in the
left panel of Figure 1 plots a QS-smoothed periodogram of Xt, i.e.,

f̂n,X(λ) =
1

2π

∑
|j|<n

wQS(j/Bn)γ̂n,X(j) cos(jλ),
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Figure 1: Left panel: spectral density (dotted line) of Xt as in (5.1), QS-smoothed periodogram (solid)
of a realization with n = 300 and Bn = 13n1/5 ≈ 40.68, chi-squared point-wise 95% confidence bands
(shaded grey) with k = 4, and γ̂n,X(0)/(2π) (dashed). Right panel: median spectrum (dotted) of Xt,
QS-smoothed median periodogram (solid), chi-squared point-wise 95% confidence bands (shaded grey),
and 0.5(1 − 0.5)/(2π) (dashed). Both panels use the same data, Bn, and k, and are normalized by
γ̂n,X(0)/(2π) (left) and 0.5(1− 0.5)/(2π) (right).

where γ̂n,X(j) := n−1
∑n

t=|j|+1(Xt − X̄n)(Xt−|j| − X̄n) and X̄n := n−1
∑n

t=1Xt, of one such

realization with n = 300 and Bn = 13n1/5 ≈ 40.68. The process (5.1) has little noise and a
single pronounced peak at 2π× 0.22 in its spectral density, shown as the dotted line in the
left panel of Figure 1. The smoothed periodogram therefore does not have much difficulty
identifying the peak, although its size is underestimated slightly due to the smoothing. The
shaded area in the left panel shows 95% asymptotic point-wise confidence bands based on
the periodogram of Xt, defined as

In,X(λ) =
1

2π

∑
|j|<n

γ̂n,X(j) cos(jλ).

The point-wise confidence bands were computed by averaging over 2k + 1 periodogram
coordinates at natural frequencies in the same way as in Corollary 3.3, but with Qn,τ

replaced by In,X . Here and in all plots below, I used k = 4. The dashed line in the left
panel plots γ̂n,X(0)/(2π), i.e., the usual estimate of fX if the spectrum were known to be
flat. It provides a natural point of comparison for the other quantities; in particular, it
can be seen from the left panel that the peak at 2π × 0.22 is significantly different from a
flat spectrum at the 5% level.

The right panel of Figure 1 analyzes the same data with quantile spectral methods. The
black line is the QS-smoothed median (i.e., 0.5-th quantile) periodogram and the shaded
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Figure 2: Empirical MISE of the QS-smoothed periodogram (left panel) and the QS-smoothed median
periodogram (right) for three different sample sizes as a function ofBn/n

1/5. Both panels were separately
normalized by the respective joint maximum of the three curves.

area graphs 95% point-wise confidence bands computed as described in Corollary 3.3. Here
I used the same values for Bn and k as in the left panel. The dashed line is 0.5(1−0.5)/(2π),
i.e., the median spectrum under the hypothesis that it is flat. The dotted line shows the
median spectrum g0.5, which can be calculated exactly from equation (6) in Li (2008). The
smoothed median periodogram clearly identifies the peak, although the estimate of the
actual size of the peak is slightly worse than the one obtained in the left panel. However,
the median spectrum is completely contained inside the confidence bands and the peak at
2π × 0.22 differs significantly from a flat median spectrum at the 5% level.

For both panels the choice of Bn and k matters, with lower values of Bn and higher values
of k leading to smoother—but not necessarily better—estimates: Figure 2 shows the mean
integrated square error (MISE) of the QS-smoothed periodogram (left panel) and the QS-
smoothed median periodogram (right) estimated from the 10,000 realizations as a function
of Bn/n

1/5. Here the behavior of both methods is quite similar and the MISEs attain their
minimum at Bn/n

1/5 ≈ 13 for each n ∈ {300, 600, 900}, which provides evidence that the
optimal growth rate Bn = O(n1/5) for the QS-smoothed periodogram is also a good choice
for QS-smoothed quantile periodograms. Further, Table 1 shows the empirical frequency
of the event that the 95% confidence interval at λ ∈ {π×0.22, 2π×0.22, 3π×0.22} covered
the spectrum and median spectrum, respectively, in the experiments for k ∈ {2, 4, 6} and
n as before. The confidence intervals constructed from the periodogram and the median
periodogram behaved very similar at the three frequencies and covered the population
value in nearly 95% of all cases unless n was small and k was large. For these values both
methods had low coverage frequencies. �
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Table 1: Finite-sample coverage frequencies of an asymptotic 95% confidence interval (CI) for the spectrum
and median spectrum of the process in Example 5.1 at λ ∈ {π×0.22, 2π×0.22, 3π×0.22} as a function
of n and k.

Periodogram CI Median Periodogram CI
n k π × .22 2π × .22 3π × .22 π × .22 2π × .22 3π × .22

300 2 0.940 0.931 0.937 0.937 0.982 0.961
4 0.936 0.676 0.931 0.924 0.907 0.974
6 0.921 0.249 0.909 0.913 0.178 0.979

600 2 0.943 0.951 0.948 0.942 0.982 0.956
4 0.946 0.915 0.947 0.938 0.980 0.962
6 0.944 0.774 0.941 0.926 0.930 0.965

900 2 0.950 0.951 0.948 0.948 0.974 0.956
4 0.949 0.941 0.946 0.940 0.980 0.959
6 0.948 0.904 0.947 0.934 0.971 0.964

Robust estimators (in the sense of Huber and Ronchetti, 2009, p. 5) exhibit stability, i.e.,
small deviations from the model assumptions should have small effects on the performance
of the estimator, and high breakdown resistance, i.e., larger deviations should not cause
catastrophic results. The following two examples illustrate that classical spectral estimates
are not robust to outliers in the data, whereas quantile spectral estimators provide reliable
results in such situations.

Example 5.2 (Stability of quantile spectral estimators). Suppose that each observation in
a realization of the AR(2) process from Example 5.1 has a probability p of being contami-
nated by an additional additive error component. For this I drew iid Bernoulli(p) variables
J1, . . . , Jn and iid central Student t(ν) variables T1, . . . , Tn to generate the observed sam-
ples as Sn = {Xt + JtTt : t = 1, . . . , n}, where the X1, . . . , Xn were taken from Example
5.1. The spectral density of the corresponding process (Xt + JtTt)t∈Z is

fX+JT (λ) = fX(λ) +
p

2π

ν

ν − 2
,

which, for any given p, can be made as large as desired by choosing ν > 2 sufficiently close
to 2 without violating the assumptions of classical spectral theory. Figure 3 plots fX+JT (λ)
for p = 0.15 and ν = 2.001 as a dotted line in the left panel; the median spectrum (dotted,
right) needed no adjustment because it is invariant under such contamination. The other
quantities are the same as in Figure 1 and the same 300 observations were used, but 46 of
these were contaminated. The smoothed periodogram retains the spectral shape and has
a significant spike at 2π × 0.22, but grossly underestimates the location of the spectrum.
Moreover, the confidence bands no longer contain the spectrum at any frequency. In sharp
contrast, the smoothed median periodogram is barely affected by the contamination and
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Figure 3: Left panel: spectral density (dotted line) of the process in Example 5.2, QS-smoothed peri-
odogram (solid) of a realization with n = 300 and Bn = 13n1/5 ≈ 40.68, chi-squared point-wise 95%
confidence bands (shaded grey) with k = 4, and γ̂n,X(0)/(2π) (dashed). Right panel: median spec-
trum (dotted), QS-smoothed median periodogram (solid), chi-squared point-wise 95% confidence bands
(shaded grey), and 0.5(1 − 0.5)/(2π) (dashed). Both panels use the same data, Bn, and k, and are
normalized by γ̂n,X(0)/(2π) (left) and 0.5(1− 0.5)/(2π) (right).

the confidence bands cover the median spectrum at almost all frequencies. The hypothesis
that g0.5(2π × 0.22) = 0.5(1− 0.5)/(2π) can also be clearly rejected.

The odd behavior of the classical spectral density estimates in Figure 3 is likely due
to the imprecisely estimated auto-covariances of the contaminated process. As Basraka,
Davis, and Mikosch (2002) point out, for near-infinite variance time series the convergence
rate of sample auto-covariances to their population equivalent is much slower than n−1/2.
Since periodograms are weighted sums of sample auto-covariances, they can be expected
to inherit this lack of precision. In contrast, the sample auto-covariances of V̂t(τ) can
be shown to converge at rate n−1/2 as long as Assumption A and a slightly strengthened
version of Assumption B hold.

I repeated the experiment from Table 1 with the contaminated data. The estimated
coverage probabilities for the confidence intervals constructed from the periodogram and
the median periodogram are shown in Table 2. As can be seen, the presence of outliers had
little effect on the performance of the quantile spectral estimates. In sharp contrast, the
coverage probability for the classical spectrum was almost zero in most cases and 0.245 in
the best scenario (k = 2, n = 900). �

Example 5.3 (Breakdown resistance of quantile spectral estimators). Now suppose instead
that each observation from Example 5.1 has a 15 percent chance of being contaminated
by one of the iid Cauchy(0, 1) variables C1, . . . , Cn. The observed samples then were
Sn = {Xt + JtCt : t = 1, . . . , n} with the X1, . . . , Xn as before. Since these outliers do not
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Table 2: Finite-sample coverage frequencies of an asymptotic 95% confidence interval (CI) for the spectrum
and the median spectrum of the process in Examples 5.2 as a function of n and k.

Periodogram CI Median Periodogram CI
n k π × .22 2π × .22 3π × .22 π × .22 2π × .22 3π × .22

300 2 0.001 0.109 0.001 0.918 0.976 0.958
4 0.001 0.001 0.001 0.900 0.858 0.965
6 0.001 0.001 0.001 0.886 0.089 0.972

600 2 0.001 0.208 0.001 0.928 0.976 0.952
4 0.001 0.006 0.001 0.914 0.966 0.958
6 0.001 0.001 0.001 0.901 0.890 0.963

900 2 0.001 0.245 0.001 0.932 0.974 0.948
4 0.001 0.013 0.001 0.924 0.973 0.957
6 0.001 0.002 0.001 0.912 0.953 0.957

have a well defined mean, the spectral density of the corresponding contaminated process
no longer exists. Spectral analysis by ordinary methods broke down completely when 46
of the 300 observations used for Figure 1 were contaminated: The smoothed periodogram
in Figure 4 no longer has the expected spectral shape and fails to give any indication of a
periodicity present in the data. A comparison of the confidence bands to the estimate of
γX(0)/(2π) now provides overwhelming evidence for the false hypothesis that the process is
white noise. In sharp contrast, the median spectrum is unaffected by the contamination and
the smoothed median periodogram significantly identifies the periodicity. In addition, the
confidence bands remain essentially unchanged from Example 5.2, which is also confirmed
by the coverage probability estimates of the confidence intervals constructed from median
periodograms provided in Table 3. Here the estimates were nearly identical to the ones
presented in Table 2 for the median spectrum. Corresponding estimates for the classical
spectrum cannot be computed because it is unbounded at all frequencies. �

For the next Monte Carlo exercise, I return to the stochastic volatility model from
Example 2.1 to illustrate that even if the classical spectrum shows no sign of periodicity,
almost all quantiles of the distribution can be crossed in a periodic manner.

Example 5.4 (Stochastic volatility, continued). Take (εt)t∈Z to be iid copies of an N(0, θ2)
variable and let ut = log v(εt−1, εt−2, . . . ) be the stationary solution of the process ut =
β1ut−1 + β2ut−2 + εt−1 with β1, β2 as in (5.1). Then eut is log-normally distributed and
Xt = εtv(εt−1, εt−2, . . . ) = εte

ut has median zero. To show that Xt is GMC, apply the Mean
Value Theorem and the Cauchy-Schwarz inequality to obtain the bound ‖Xn − X ′n‖α ≤
‖εn‖α‖eūn‖2α‖un − u′n‖2α, where u′n is un with (ε0, ε−1, . . . ) replaced by (ε∗0, ε

∗
−1, . . . ) and

ūn lies on the line segment joining un and u′n. By monotonicity of the exponential function
and the Minkowski inequality, we have

‖eūn‖max{1,2α} ≤
∥∥max

{
eun , e−un , eu

′
n , e−u

′
n
}∥∥

max{1,2α} ≤ 4‖eun‖max{1,2α} <∞
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Figure 4: Left panel: QS-smoothed periodogram (solid black) of a realization of the process in Example
5.3 with n = 300 and Bn = 13n1/5 ≈ 40.68, chi-squared point-wise 95% confidence bands (shaded grey)
with k = 4, and γ̂n,X(0)/(2π) (dashed). The spectral density does not exist. Right panel: median
spectrum (dotted), QS-smoothed median periodogram (solid), chi-squared point-wise 95% confidence
bands (shaded grey), and 0.5(1 − 0.5)/(2π) (dashed). Both panels use the same data, Bn, and k, and
are normalized by γ̂n,X(0)/(2π) (left) and 0.5(1− 0.5)/(2π) (right).

Table 3: Finite-sample coverage frequencies of an asymptotic 95% confidence interval for the median spec-
trum of the process in Example 5.3 as a function of n and k.

Median Periodogram
n k π × .22 2π × .22 3π × .22

300 2 0.904 0.971 0.957
4 0.889 0.827 0.960
6 0.861 0.059 0.966

600 2 0.915 0.973 0.948
4 0.901 0.961 0.952
6 0.884 0.872 0.955

900 2 0.918 0.970 0.951
4 0.905 0.966 0.952
6 0.883 0.940 0.951
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because the four terms inside the maximum have the same log-normal distribution. If
needed, the Loève cr inequality provides a similar bound for the case 0 < 2α < 1. The
GMC property then follows since ut is GMC by Theorem 5.2 of Shao and Wu (2007).
The distribution function of Xt is given by FX(x) = EΦ(x/(eutθ)), which can be seen to
have a bounded density with the help of the Lebesgue Dominated Convergence Theorem.
Therefore, Assumptions A and B again hold.

The top two panels of Figure 5 graph the same spectral estimates as in Figure 1 for
n = 600 observations of the stochastic volatility model with θ = 1. The spectrum (not
shown to prevent clutter) and the median spectrum (identical to the dashed line in the top
right panel) of the model are flat, which is also correctly identified at almost all frequencies
by both point-wise confidence bands. The bottom two panels show the smoothed quantile
periodograms (black lines) and point-wise confidence bands (shaded grey) at τ = 0.25
(left) and τ = 0.75 (right) computed from the same data. In both panels, the estimated
quantile spectra show a considerable spike that is significantly different from a flat τ -th
quantile spectrum at frequency 2π × 0.22, thereby providing evidence of a dependence
structure that is not present in the mean and auto-covariance of the process. In addition,
the estimated quantile spectra at τ = 0.25 and τ = 0.75 have a large, but less informative
spike at frequency zero (not shown to enhance readability) that corresponds to the long-run
variation discovered at quantiles other than the median. Since the quantile spectra of the
process do not possess a closed-form expression for τ 6= 0.5, I instead also plot smoothed
quantile periodograms of n = 106 observations at τ = 0.25 (left) and τ = 0.75 (right) as
dotted lines in the bottom panels to illustrate how much of the spectral shape is already
recovered in a sample with 600 observations. Indeed, although the estimates from the
smaller sample are more volatile, the size and shape of the peaks at 2π × 0.22 are nearly
identical for the two sample sizes.

To evaluate how reliably the quantile spectral estimates discover the cycle at frequency
2π × 0.22, I recorded the relative number of the test decisions in favor of the hypothesis
H0 : gτ (2π × 0.22) = τ(1− τ)/(2π) in 10,000 realizations of the stochastic volatility model
using a 95% confidence interval with k = 4. The results are shown in Figure 6 for different
sample sizes as a function of τ ∈ (0, 1). At τ = 0.5, the null hypothesis is true and the
tests almost attained the 5% level (lower grey line) for the three sample sizes. At the other
quantiles, the null hypothesis is false, which was also correctly recognized at all sample
sizes as long as a quantile not too close to τ = 0.5 was chosen. In particular, near the
quartiles the power of the tests was about 0.9.

The additional information obtained from quantile spectral analysis can also be seen in
Figure 7, where I graph the QS-smoothed quantile periodogram as a function of both λ
and τ . Here I chose n = 900 and Bn = 8n1/5 ≈ 31.18 for a smoother appearance of the
plot. The two humps in the figure make it clear that most of the dependence structure
is in fact present near the lower and upper quartiles of the process, whereas working with
the mean or median provides no insight in this case. �

The following examples illustrate the size and power of the two Cramér-von Mises tests
introduced in section 4.
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Figure 5: Top left panel: QS-smoothed periodogram (solid) of a realization of the process in Example 5.4
with n = 600 and Bn = 13n1/5 ≈ 46.73, chi-squared point-wise 95% confidence bands (shaded grey)
with k = 4, and γ̂n,X(0)/(2π) (dashed). Other panels: QS-smoothed τ -th quantile periodogram (solid),
chi-squared point-wise 95% confidence bands (shaded grey), and τ(1 − τ)/(2π) (dashed) for τ = 0.5
(top right), 0.25 (bottom left), and 0.75 (bottom right). All panels use the same data, Bn, and k.
The top left panel is normalized by γ̂n,X(0)/(2π). The other panels are normalized by τ(1 − τ)/(2π).
The bottom two panels also show QS-smoothed τ -th quantile periodograms (dotted) with n = 106 for
τ = 0.25 (left) and 0.75 (right). Frequencies near zero are not shown to enhance readability.
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Figure 6: Empirical size and power of a test for a cycle with frequency 2π×0.22 in the stochastic volatility
model of Example 5.4 as a function of τ . Nominal size at τ = 0.5 is 0.05 (lower grey line).
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Figure 7: QS-smoothed quantile periodogram across all quantiles of a realization of the process in Ex-
ample 5.4 with n = 900 and Bn = 8n1/5 ≈ 31.18, normalized by the joint maximum of all quantile
periodograms. Frequencies near zero are not shown for better readability.
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Table 4: Rejection frequencies of the null hypothesis for the Monte Carlo Cramér-von Mises test (Procedure
4.4) at the 5% level.

Size Power
n τ χ2

3 Ex. 5.4 QAR Ex. 5.1 Ex. 5.4 QAR
100 0.1 0.022 – 0.024 0.093 0.007 –

0.5 0.053 0.068 – 0.999 – 0.999
0.9 0.037 – – 0.169 0.332 0.993

200 0.1 0.019 – 0.021 0.405 0.043 –
0.5 0.052 0.076 – 1.000 – 1.000
0.9 0.046 – – 0.504 0.468 1.000

300 0.1 0.048 – 0.029 0.795 0.188 –
0.5 0.052 0.080 – 1.000 – 1.000
0.9 0.050 – – 0.875 0.724 1.000

Example 5.5 (QAR(2) and Procedure 4.4). Table 4 shows the empirical rejection fre-
quency of the null hypothesis of a flat τ -th quantile spectrum as a function of n ∈
{100, 200, 300} and τ ∈ {0.1, 0.5, 0.9} in a variety of settings. For each entry, I recorded the
test decision of Procedure 4.4 in 10,000 realizations by comparing the test statistics to 5%
critical values obtained from 106 simulations each. The first column of the “Size” portion
provides the rejection frequencies when the data were iid χ2

3 variables. In this case, the null
hypothesis is true at all quantiles. The test behaved mildly conservatively for τ = 0.1 in
smaller samples, but was close to the level of the test at other quantiles and samples sizes.
In samples larger than 300 (not reported), the test was essentially exact at all quantiles. I
also experimented with other distributions, including normal, Student t(2), and standard
Cauchy variables, but found that they had little impact on the results.

The first column of the “Power” portion shows the relative number of rejections when the
data-generating process was the AR(2) from Example 5.1. Here the null hypothesis is false
at all quantiles, which was also reliably identified at the median at all samples. However,
at the outer quantiles the spectral peak is smaller and therefore larger samples were needed
to detect its presence. The results for the contaminated processes from Examples 5.2 and
5.3 are not shown because they were virtually identical.

The second “Size” and “Power” columns give the rejection frequencies for the stochastic
volatility model from Example 5.4. The null hypothesis is true at τ = 0.5, but the process
is not covered by the assumptions underlying the Monte Carlo test because the stochastic
volatility model is not iid, which resulted in a mild over-rejection at all sample sizes. At
the other quantiles, the process satisfies H1 and the test has power against this alternative
by Corollary 4.5(ii). The power of the test increased sharply with the sample size for
τ = 0.9, whereas for τ = 0.1 the increase was considerably slower. Some intuition for
this result can be gathered from Figure 5, where the estimated quantile spectrum in the
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lower quantiles can be seen to have a long stretch on which it is close to the hypothetical
quantile spectrum implied by the null hypothesis. In contrast, this stretch is somewhat
shorter in the upper quantiles. Moreover, as shown in Figure 7, the setup for the test is
quite demanding because the spectral peak near the extremes of the distribution is small.
Larger samples (not reported) yielded better results, with the power being nearly one at
all quantiles for n = 600.

The third columns of the “Size” and “Power” portions show the relative number of
rejections of the hypothesis of a flat τ -th quantile spectrum for realizations of the QAR(2)
process (see Example 2.2)

Xt = 4 + Φ−1(εt)︸ ︷︷ ︸
β0(εt)

+ 0.8× 1{εt > 0.2}︸ ︷︷ ︸
β1(εt)

Xt−1 + 0.6× 1{εt > 0.6}︸ ︷︷ ︸
β2(εt)

Xt−2 (5.2)

where, as before, (ε)t∈Z is a sequence of iid copies of a Uniform(0, 1) variable. By Theorem
5.1 of Shao and Wu (2007), this recursion admits a stationary solution of the form (3.1)
and satisfies the GMC property. Further, the marginal distribution function of Xt can
be seen to possess a bounded Lebesgue density from the properties of truncated normal
variables and dominated convergence. If (Xt)t∈Z is positive, the right-hand side of (5.2) is
guaranteed to be increasing in εt conditional on Xt−1, Xt−2 and the model in the preceding
display is indeed a proper QAR model. Since the process has a very small probability of
generating a negative observation, I therefore considered only positive realizations of (5.2)
in order to enforce well-behaved sample paths.

The QAR process satisfies the null hypothesis of a flat quantile spectrum for τ ∈ (0, 0.2]
and the alternative at the other quantiles. In particular, it behaves like a stationary
QAR(1) on τ ∈ (0.2, 0.6] that exhibits enough mean reversion to regulate the explosive
behavior of the process on τ ∈ (0.6, 1). This dependence structure induces an asymmetric
spectral shape across quantiles, with spectral peaks of different sizes at frequency zero in
the middle to upper quantiles. The QS-smoothed quantile periodogram of a realization
with n = 900 plotted in Figure 8 illustrates this shape. As can be seen from Table 4, the
Monte Carlo Cramér-von Mises test very reliably detected the presence of the alternative
hypothesis at τ = 0.5 and 0.9 even for n = 100. At τ = 0.1 the null hypothesis is true and,
although Procedure 4.4 does not apply because the observations are not iid, the test was
only mildly conservative. �

Example 5.6 (QAR(2) and Procedure 4.6). I repeated the experiments outlined in the
previous example with the wild bootstrap test described in Procedure 4.6. I experimented
with the block size bn, but found that the results were not overly sensitive to this choice
as long as the blocks were not too large. I therefore settled for block sizes near

√
n/2 and

used bn = 5, 8, and 10 for n = 100, 200, and 300, respectively, although other choices are
clearly possible; see Shao (2011a) for a thorough discussion.

The results are shown in Table 5. The important difference to the preceding example
is that the QAR(2) model (5.2) is now fully covered by the assumptions of the test; see
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Figure 8: QS-smoothed quantile periodogram across all quantiles of a realization of the QAR(2) process
in Example 5.5 with n = 900 and Bn = 8n1/5 ≈ 31.18, normalized by the joint maximum of all quantile
periodograms.

Table 5: Rejection frequencies of the null hypothesis for the bootstrap Cramér-von Mises test (Procedure
4.6) at the 5% level. The block sizes are bn = 5, 8, and 10 for n = 100, 200, and 300, respectively. I used
the warp-speed method of Giacomini et al. (2007) to estimate size and power of the bootstrap test; this
method considerably sped up the simulations because only one bootstrap replication per Monte Carlo
replication was needed.

Size Power
n τ χ2

3 Ex. 5.4 QAR Ex. 5.1 Ex. 5.4 QAR
100 0.1 0.027 – 0.026 0.113 0.056 –

0.5 0.055 0.094 – 1.000 – 0.999
0.9 0.029 – – 0.170 0.110 0.374

200 0.1 0.031 – 0.030 0.430 0.339 –
0.5 0.058 0.083 – 1.000 – 1.000
0.9 0.049 – – 0.486 0.422 0.635

300 0.1 0.050 – 0.051 0.754 0.550 –
0.5 0.056 0.090 – 1.000 – 1.000
0.9 0.052 – – 0.780 0.567 0.820
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Theorem 4.7. This is also reflected in the test for a flat quantile spectrum of the QAR
process at τ = 0.1, which was nearly exact for n = 300. The other results in the “Size”
portion of the table were similar to the ones given in Table 4 for the Monte Carlo test. The
power of the bootstrap test was also comparable to the other test, but neither of the tests
dominated the other: For the AR model both test behaved similarly, for the stochastic
volatility model the bootstrap test showed a more balanced performance, and for the QAR
model the Monte Carlo test was more powerful at the outer quantiles. �

Example 5.7 (Building permits data). Finally, to illustrate what kind of insights quantile
spectral analysis of actual economic data can provide, I consider the series “New Privately
Owned Housing Units Authorized by Building Permits in Permit-Issuing Places” from the
US Census.1 The data consist of 634 (seasonally unadjusted) monthly observations from
January 1959 to October 2011 of the total number of permits from permit-issuing places
in the United States that report to the Census. Such a permit is typically issued by a town
or a county and enables an individual to begin construction on a new housing unit.

Figure 9 graphs this time series in the frequency domain: The smoothed periodogram
(solid line, top left) and smoothed median periodogram (solid, top right) behave similarly
and have their largest peaks at frequencies 0.045 and 0.039, respectively, which translates
into an estimated business cycle length of 11.58 years when measured by the smoothed
periodogram and 13.39 years when measured by the smoothed median periodogram. Both
lines also have peaks of similar size at the yearly (2π/12 ≈ 0.52) and half-yearly (2π/6 ≈
1.05) frequencies, which provides evidence of considerable seasonality in the data. However,
as illustrated by the smoothed 0.10-th quantile periodogram (solid, bottom left) and 0.90-th
quantile periodogram (solid, bottom right), these seasonal cycles do not appear uniformly
across the distribution of the data. At the 0.90-th quantile the yearly and—to some
extent—the half-yearly cycles are still present, but at the 0.10-th quantile this seasonality
vanishes completely. The smoothed 0.10-th quantile periodogram also has some smaller
peaks between 0.2 and 0.5, but comparison to the confidence intervals (shaded grey) shows
that these peaks are not significantly different from a straight line. All graphs have in
common, however, that the business cycle explains most of the cyclical variation, which
indicates that the influence of seasonal patterns disappears during economic troughs. �

6. Conclusion

In this paper I introduced quantile spectral densities that summarize the cyclical behavior
of time series across their whole distribution by analyzing periodicities in quantile crossings.
I discussed robust spectral estimation and inference in situations where the dependence
structure of a time series is not accurately captured by the auto-covariance function, in
particular when the time series under consideration is uncorrelated or heavy-tailed. I
established the statistical properties of quantile spectral estimators in a large class of
nonlinear time series models and discussed inference both at fixed and across all frequencies.

1I downloaded the data from http://www.census.gov/const/permits cust.xls on November 30, 2011.
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Figure 9: Top left panel: QS-smoothed periodogram (solid) of building permit data with Bn = 28n1/5 ≈
101.76 to prevent smaller peaks from being smoothed out, chi-squared point-wise 95% confidence bands
(shaded grey, not shown completely to prevent clutter) with k = 4, and γ̂n,X(0)/(2π) (dashed). Other
panels: QS-smoothed τ -th quantile periodogram (solid), chi-squared point-wise 95% confidence bands
(shaded grey), and τ(1− τ)/(2π) (dashed) for τ = 0.5 (top right), 0.10 (bottom left), and 0.90 (bottom
right). All panels use the same data, Bn, and k. The top left panel is normalized by γ̂n,X(0)/(2π). The
other panels are normalized by τ(1− τ)/(2π).
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Monte Carlo experiments and an empirical example showed that quantile spectral estimates
are similar to regular spectral density estimates in both shape and interpretation when
standard conditions are satisfied, but can still reliably identify dependence structures when
these conditions fail to hold.

Appendix

Throughout the Appendix, P∗ and E∗ respectively denote outer probability and outer
expectation (see, e.g., van der Vaart, 1998, p. 258). Probability and expectation conditional
on the observed sample Sn is abbreviated by P̂(·) := P(· | Sn) and Ê(·) := E(· | Sn).

A. Proofs

Proof of Proposition 3.1. By assumption, we can find a δ′ > 0 such that FX is Lipschitz on
(ξ0(τ)− δ′, ξ0(τ) + δ′). Choose a large enough N ∈ N such that δ := δ′ − %N/(1+α) > 0 and
pick any ξ ∈ Xτ (δ); then, for all n ≥ N , apply the pointwise bound |1{Xn < ξ} − 1{X ′n <
ξ}| ≤ 1{|Xn− ξ| < |Xn−X ′n|}, the Markov inequality, and the GMC property to see that

‖1{Xn < ξ} − 1{X ′n < ξ}‖2 ≤ P(|Xn − ξ| < |Xn −X ′n|)
≤ P(|Xn − ξ| < %nα/(1+α)) + E|Xn −X ′n|α%−nα

2/(1+α)

≤M%nα/(1+α)

for a large enough absolute constant M . This constant can be enlarged slightly to ensure
that the inequality also holds for the remaining n < N . With σ := %α/(2+2α), take square-
roots on both sides and suprema over Xτ (δ) to establish the desired result.

Proof of Theorem 3.2. Let Zt,n = (Xt, tλn) and define the maps hξ(Zt,n) = 1{Xt < ξ} ×
cos(tλn) and h∗ξ(Zt,n) = 1{Xt < ξ} × sin(tλn). The empirical process evaluated at some

function h is denoted by νn h := n−1/2
∑n

t=1

(
h(Zt,n)− Eh(Zt,n)

)
.

The finite Fourier transform at nonzero natural frequencies is invariant to centering.
Hence, from (2.3), we have the decomposition

Qn,τ (λn) =
1

2π

∣∣∣νn(hξ̂n(τ) − hξ0(τ)

)
+ i νn

(
h∗
ξ̂n(τ)
− h∗ξ0(τ)

)
− n−1/2

n∑
t=1

Vt(τ)e−itλn
∣∣∣2 (A.1)

For the proof of the theorem, I proceed in three steps: I show that (i) the first term and
(ii) the second term inside the modulus in the display are small in probability and that
(iii) the remainder of (A.1) has the desired asymptotic distribution jointly for frequencies
λn + 2πj/n with |j| ≤ k.

Step (i): Define a norm ρ(hξ) = supt,n∈N ‖hξ(Zt,n)‖. Take a grid of points ξ0(τ) − δ =:

ξ0 < ξ1 < · · · < ξN := ξ0(τ) + δ and let bk(Zt,n) :=
(
hξk(Zt,n,) − hξk−1

(Zt,n)
)
/ cos(tλn).
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Given a ξ ∈ Xτ (δ), we can then find an index k such that |hξ − hξk−1
| ≤ bk. In addition,

we have

ρ(bk) = ‖1{X0 < ξk} − 1{X0 < ξk−1}‖ ≤
√
FX(ξk)− FX(ξk−1),

which is bounded above by a constant multiple of
√
ξk − ξk−1 due to Lipschitz continuity.

Hence, if we choose the grid such that ρ(bk) ≤ ε for all k = 1, . . . , N , the parametric class
H := {hξ : ξ ∈ Xτ (δ)} has bracketing numbers (see Andrews and Pollard, 1994; van der
Vaart, 1998, pp. 270-271) with respect to ρ of order N(ε,H) = O(ε−2) as ε→ 0.

By the same calculations as in the preceding display, there is some M > 0 such that all
ξ, ξ′ ∈ Xτ (δ) satisfy ρ(hξ − hξ′) ≤M |ξ− ξ′|1/2 and therefore ρ(hξ̂n(τ)− hξ0(τ))→p 0 in view

of Lemma A.1 below. For ε, η > 0, the limit superior of P
(
| νn(hξ̂n(τ)− hξ0(τ))| ≥ ε

)
is then

at most

lim sup
n→∞

P
(∣∣νn(hξ̂n(τ) − hξ0(τ)

)∣∣ ≥ ε, ρ
(
hξ̂n(τ) − hξ0(τ)

)
≤ η
)

≤ lim sup
n→∞

P∗
(

sup
ξ∈Xτ (δ):ρ(hξ−hξ0(τ))≤η

∣∣νn(hξ − hξ0(τ)

)∣∣ ≥ ε

)
(A.2)

The Markov inequality and Lemma A.3 below imply that the term on the right can be
made as small as desired by choosing η small enough. This is also true for the frequencies
λn + 2πj/n with |j| ≤ k.

Step (ii): Replace cosines with sines in the proofs of Lemmas A.2 and A.3 (with the
same bounding functions bk as above) to reach the same conclusion for νn(h∗ξ0(τ) − h∗ξ̂n(τ)

).

Step (iii): In view of (i), (ii), and continuity of the modulus, I only have to show that
the remainder of (A.1) converges jointly at each λn + 2πj/n, |j| ≤ k, in distribution to
independent exponential variables with mean gτ (λ). For this I apply Corollary 2.1 of Shao
and Wu (2007). Because Vt(τ) is a bounded mean-zero variable, the only condition that
has to be checked is

∑∞
t=0 ‖E(Vt(τ) | F0)−E(Vt(τ) | F−1)‖ <∞. By the conditional Jensen

inequality, the law of iterated expectations, and Assumption C, this summability condition
is satisfied because∥∥E(Vt(τ) | F0

)
− E

(
Vt(τ) | F−1

)∥∥ =
∥∥E(1{Xt < ξ0(τ)} − 1{X∗t < ξ0(τ)} | F0

)∥∥
≤ ‖1{Xt < ξ0(τ)} − 1{X∗t < ξ0(τ)}‖.

Assumption A implies Assumption C, and so the joint convergence asserted in Theorem
3.2 follows.

Lemma A.1. Suppose Assumptions B and C hold; then
√
n(ξ̂n(τ)− ξ0(τ)) = Op(1).

Proof of Lemma A.1. Arguing as in the proof of Theorem 1 of Wu (2005), use the condi-
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tional Jensen inequality and the law of iterated expectations to deduce that

‖E(1{Xt < ξ} | F0)− E(1{X∗t < ξ} | F−1, ε
∗
0)‖

= ‖E(1{Xt < ξ} − 1{X∗t < ξ} | F0, ε
∗
0)‖

≤ ‖1{Xt < ξ} − 1{X∗t < ξ}‖.

Taking suprema over Xτ (δ) shows that Assumption C implies condition (7) of Wu (2007)
and his Theorem 1 then yields the desired result.

For Lemmas A.2 and A.3, I mimic the proofs of Andrews and Pollard’s (1994) Theorem
2.2 and Lemma 3.1; their arguments do not apply directly since Andrews and Pollard work
with strongly mixing arrays.

Lemma A.2. Let φ(hξ − hξ′) := ρ(hξ − hξ′)
2/(2+γ) for some γ > 0 and suppose that

Assumption A holds. Then, for all n ∈ N, all ξ, ξ′ ∈ Xτ (δ), and every even integer Q ≥ 2,

E| νn(hξ − hξ′)|Q ≤ n−Q/2C
(
(φ(hξ − hξ′)2n) + · · ·+ (φ(hξ − hξ′)2n)Q/2

)
,

where C depends only on Q, γ, and σ. The inequality remains valid when hξ − hξ′ is
replaced by bk for any given k ≥ 1.

Proof of Lemma A.2. It suffices to show the inequality given in the lemma after dividing
both sides by 4Q to ensure that the absolute value of

Ht :=
(
hξ(Zt,n)− hξ′(Zt,n)− (Ehξ(Zt,n)− Ehξ′(Zt,n))

)
/4

is bounded by 1. The 4−Q on the right hand can be absorbed into C. Define H ′t in the
same way as Ht but replace Xt with X ′t. Here I suppress the dependence of Ht and H ′t on
n, ξ, and ξ′ because they are irrelevant in the following. Also note that EHt = EH ′t = 0
for all t, n ∈ N and all ξ, ξ′ ∈ Xτ (δ) because Xt and X ′t are identically distributed.

For fixed k ≥ 2, d ≥ 1, and 1 ≤ m < k, consider integers t1 ≤ · · · ≤ tm ≤ tm+1 ≤ · · · ≤ tk
so that tm+1 − tm = d and define ak(λn) = |2−k

∏k
i=1 cos(tiλn)|. Since Ut := Ht/ cos(tλn)

and U ′t := H ′t/ cos(tλn) are stationary, repeatedly add and subtract to see that∣∣EHt1Ht2 · · ·Htk − EHt1Ht2 · · ·HtmEHtm+1 · · ·Htk

∣∣
= ak(λn)

∣∣EUt1−tmUt2−tm · · ·Utk−tm − EUt1−tmUt2−tm · · ·U0EUd · · ·Utk−tm
∣∣

≤ ak(λn)
∣∣EUt1−tm · · ·U0(Ud − U ′d)Utm+2−tm · · ·Utk−tm

∣∣
+

k−m−1∑
i=2

ak(λn)
∣∣EUt1−tm · · ·U0U

′
d · · · (Utm+i−tm − U ′tm+i−tm) · · ·Utk−tm

∣∣ (A.3)

+ ak(λn)
∣∣EUt1−tm · · ·U0U

′
d · · ·U ′tk−tm − EUt1−tm · · ·U0EUd · · ·Utk−tm

∣∣
In particular, the last term on the right-hand side is zero because Ut1−tm · · ·U0 and U ′d · · ·
U ′tk−tm are independent and U ′d · · ·U ′tk−tm and Ud · · ·Utk−tm are identically distributed.
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By Assumption A, ‖Ud − U ′d‖s ≤ ‖1{Xd < ξ} − 1{X ′d < ξ}‖s + ‖1{Xd < ξ′} − 1{X ′d <
ξ′}‖s ≤ 2 supξ∈Xτ (δ) ‖1{Xd < ξ} − 1{X ′d < ξ}‖s ≤ C ′σd for some C ′ > 0 and s ≥ 1. Here
the choice of s does not matter because Assumption A still applies when ‖ ·‖ is replaced by
‖ · ‖s for any s > 0; see Lemma 2 of Wu and Min (2005). Hölder’s inequality then bounds
the first term on the right-hand side of the preceding display by

‖Ht1 · · ·Htm‖p‖Htm+2 · · ·Htk‖qC ′σd, (A.4)

where the reciprocals of p, q, and s sum to 1. Proceeding as in Andrews and Pollard (1994),
another application of the Hölder inequality yields

‖Ht1 · · ·Htm‖p ≤
( m∏
i=1

E|Hti |mp
)1/(mp)

≤ φ(hξ − hξ′)(2+γ)/p

whenever mp ≥ 2 and similarly ‖Htm+2 · · ·Htk‖q ≤ φ(hξ − hξ′)(2+γ)/q whenever (k −m −
1)q ≥ 2. Suppose for now that k ≥ 3. If k > m + 1, take s = (γ + Q)/γ and mp =
(k − m − 1)q = (k − 1)/(1 − 1/s). Decrease the resulting exponent of φ(hξ − hξ′) from
Q(2 + γ)/(Q + γ) to 2 to see that (A.4) is bounded by C ′σdφ(hξ − hξ′)

2. If k ≥ 2 and
k = m + 1, the factor ‖Htm+2 · · ·Htk‖q is not present in (A.4), but we can still choose
s = (γ + Q)/γ and mp = (k − 1)/(1 − 1/s) to obtain the same bound. Since the same
argument also applies to each of the other summands in (A.3), we can find a constant
M > 0 such that∣∣EHt1Ht2 · · ·Htk

∣∣ ≤ ∣∣EHt1Ht2 · · ·HtmEHtm+1 · · ·Htk

∣∣+Mσdφ(hξ − hξ′)2.

Here M in fact depends on k, but this does not disturb any of the subsequent steps.
Now replace (A.2) in Andrews and Pollard (1994) by the inequality in the preceding

display. In particular, replace their 8α(d)1/s with Mσd and their τ 2 with φ(hξ−hξ′)2. The
rest of their arguments now go through without changes.

The inequality for bk follows by letting λn ≡ 0; this is not a contradiction to the assump-
tions of Theorem 3.2 because this proof is valid for any sequence (λn)n∈N.

Lemma A.3. Suppose the assumptions of Theorem 3.2 hold. For every ε > 0 and every
even integer Q ≥ 4, there is an η > 0 such that

lim sup
n→∞

E∗
(

sup
ξ,ξ′∈Xτ (δ):ρ(hξ−hξ′ )≤η

| νn(hξ − hξ′)|
)Q
≤ ε.

Proof of Lemma A.3. I follow Andrews and Pollard’s (1994) proof of their Theorem 2.1.
It requires three steps: (i) Their “Proof of inequality (3.2),” (ii) their “Proof of inequality
(3.3),” and (iii) their “Comparison of pairs” argument. Replace their i with k and their
τ(hi) with φ(bk); then apply Lemma A.2 above instead of Andrews and Pollard’s (1994)
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Lemma 3.1 in the derivation of their inequality (3.5) to deduce∥∥∥ max
1≤k≤N

| νn bk|
∥∥∥
Q
≤ C ′N1/Q max

{
n−1/2, max

1≤k≤N
φ(bk)

}
and use this inequality in (i) instead of their inequality (3.5). In (i) Andrews and Pol-

lard also require the finiteness of the bracketing integral
∫ 1

0
x−γ/(2+γ)N(x,H)1/Q dx, which

follows immediately by choosing γ = Q − 4. Another application of Lemma A.2 estab-
lishes the required analogue of Andrews and Pollard’s inequality (3.5) used in (ii). The
same inequality can also be applied in (iii). The other arguments remain valid without
changes.

Proof of Theorem 3.6. Denote by r̃n,τ (j) = n−1
∑n
|j|+1 Vt(τ)Vt−|j|(τ) and

g̃n,τ (λ) :=
1

2π

∑
|j|<n

w(j/Bn)r̃n,τ (j)e
−ijλ

the infeasible sample auto-covariance and smoothed quantile spectrum, respectively, based
on the unknown quantile ξ0(τ). The triangle inequality and |Vt(·, ·)| < 1 yield

2π sup
λ∈(−π,π]

|ĝn,τ (λ)− g̃n,τ (λ)|

≤ 1

n

∑
|j|<n

|w(j/Bn)|
n∑

t=|j|+1

|V̂t(τ)V̂t−|j|(τ)− Vt(τ)Vt−|j|(τ)|

≤ 1

n

∑
|j|<n

|w(j/Bn)|
n∑

t=|j|+1

(
|V̂t(τ)− Vt(τ)|+ |V̂t−|j|(τ)− Vt−|j|(τ)|

)
≤ 1

n

∑
|j|<n

|w(j/Bn)|
n∑

t=|j|+1

(
1{|Xt−ξ0(τ)|<|ξ̂n(τ)−ξ0(τ)|}

+ 1{|Xt−|j|−ξ0(τ)|<|ξ̂n(τ)−ξ0(τ)|}

)
.

Consider the first indicator function on the right-hand side of the preceding display and
recall that

√
n(ξ̂n(τ) − ξ0(τ)) is uniformly tight by Lemma A.1. For any given ε > 0 and

η > 0, the Markov inequality implies for large enough M > 0

lim sup
n→∞

P

(
1

n

∑
|j|<n

|w(j/Bn)|
n∑

t=|j|+1

1{|Xt−ξ0(τ)|<|ξ̂n(τ)−ξ0(τ)|} ≥ η

)

≤ lim sup
n→∞

P

(
1

n

∑
|j|<n

|w(j/Bn)|
n∑

t=|j|+1

1{|Xt−ξ0(τ)|<Mn−1/2} ≥ η

)
+ sup

n∈N
P
(
|ξ̂n(τ)− ξ0(τ)| ≥Mn−1/2

)
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≤ lim sup
n→∞

1

η

∑
|j|<n

|w(j/Bn)|P(|X0 − ξ0(τ)| < Mn−1/2) + ε.

By Lemma 1 of Jansson (2002), the limit superior of B−1
n

∑
|j|<n |w(j/Bn)| is finite, and

in view of the assumed Lipschitz continuity, the first term on the right-hand side of the
preceding display then vanishes because Bnn

−1/2 → 0. The same argument applies to the
second indicator function above due to stationarity. Together this yields supλ |ĝn,τ (λ) −
g̃n,τ (λ)| →p 0.

To show g̃n,τ (λ)→p gτ (λ) uniformly in λ, I use Liu and Wu’s (2010) Theorem 1, which
applies whenever the windows w ∈ W satisfy their Condition 1. The only two conditions
that need to be established are the absolute integrability of w, which is immediate from∫∞
−∞ |w(x)| dx ≤ 2

∫∞
0
w̄(x) dx <∞, and

lim sup
n→∞

B−1
n

∑
j∈Z

w(j/Bn)2 <∞.

Although Liu and Wu (2010) provide a specific value for the limit in the preceding display,
its boundedness is in fact all that is needed for the proof of their Theorem 1. To this end,
take M ≥ supx∈R |w(x)| such that for j ≥ 1

w(j/Bn)2 ≤M |w(j/Bn)| ≤Mw̄(j/Bn) ≤MBn

∫ j/Bn

(j−1)/Bn

w̄(x) dx

by monotonicity, and therefore symmetry implies

B−1
n

∑
j∈Z

w(j/Bn)2 ≤ B−1
n + 2M

∞∑
j=1

∫ j/Bn

(j−1)/Bn

w̄(x) dx = B−1
n + 2M

∫ ∞
0

w̄(x) dx,

which is finite by assumption. This is also true for its limit superior as n → ∞. The
triangle inequality completes the proof.

Proof of Theorem 4.1. (i) The process Sn,τ (λ) can be decomposed into

√
n

n−1∑
j=1

(
r̂n,τ (j)− r̃n,τ (j)

)
ψj(λ) +

√
n

n−1∑
j=1

r̃n,τ (j)ψj(λ).

The second term side converges weakly in L2(Π) to Sτ (λ) by the proof of Theorem 2.1 of
Shao (2011a). The Continuous Mapping Theorem then yields CM n,τ  ‖Sτ‖2

Π as long as
the L2(Π)-norm of the first term of the display is eventually small in probability.

To this end, define ϕj = ‖ψj‖Π and note that 〈ψj, ψk〉 = 0 for j 6= k. Use this orthogo-
nality to write

∥∥∥√n n−1∑
j=1

(
r̂n,τ (j)− r̃n,τ (j)

)
ψj

∥∥∥2

Π
= n

n−1∑
j=1

(
r̂n,τ (j)− r̃n,τ (j)

)2
ϕ2
j .
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Let rn,τ (j, ξ) = (τ − FX(ξ))2(n − j)/n for j > 0 and ξ ∈ R. Under the null hypothesis,
we have rτ (j) = 0 = rn,τ (j, ξ0(τ)) for all j > 0 and, by Lipschitz continuity, there exists

M > 0 such that řn,τ (j) := rn,τ (j, ξ̂n(τ)) ≤ |FX(ξ̂n(τ)) − τ |2 ≤ M |ξ̂n(τ) − ξ0(τ)|2 for all
j > 0. In view of these properties, fix some K ≤ n and apply the Loève cr inequality to
bound the quantity in the preceding display by

2n
K−1∑
j=1

(
r̂n,τ (j)− řn,τ (j)−

(
r̃n,τ (j)− rτ (j)

))2

ϕ2
j (A.5)

+ 2n
K−1∑
j=1

řn,τ (j)
2ϕ2

j + n

n−1∑
j=K

(
r̂n,τ (j)− r̃n,τ (j)

)2
ϕ2
j . (A.6)

Fix ε, ε′ > 0 and let eξ,j(Xt, Xt+j) := Vt(τ, ξ)Vt+j(τ, ξ). For given j > 0, take ρ(eξ,j−eξ′,j)
as the distance of ξ and ξ′ on Xτ (δ), where ρ is as in the proof of Theorem 3.2. The distance
also depends on τ , but this is irrelevant in the following. Note that ρ(eξ,j−eξ′,j) ≤ 2‖1{X0 <
ξ}− 1{X0 < ξ′}‖ ≤M ′|ξ− ξ′| uniformly in j > 0 for some M ′ > 0 by stationarity. Hence,
for any ηj > 0, 1 ≤ j < K, we have

P
K−1⋃
j=1

{
ρ
(
eξ̂n(τ),j − eξ0(τ),j

)
> ηj

}
≤ P

(
|ξ̂n(τ)− ξ0(τ)|1/2 > min

1≤j<K
ηj/M

′
)

= o(1).

Under the null hypothesis, we can write
√
n(r̃n,τ (j) − rτ (j)) =

√
(n− j)/n νn−j eξ0(τ)

and, by (4.3),
√
n(r̂n,τ (j) − řn,τ (j)) =

√
(n− j)/n νn−j eξ̂n(τ) as long as ξ̂n(τ) ∈ Xτ (δ),

where I use the notation from the proof of Theorem 3.2. In view of the preceding display,
(A.5) then satisfies

lim sup
n→∞

P
(
n
K−1∑
j=1

(
r̂n,τ (j)− řn,τ (j)−

(
r̃n,τ (j)− rτ (j)

))2

ϕ2
j ≥ ε/2

)

≤ lim sup
n→∞

P∗
(
K−1∑
j=1

(
sup

ξ∈Xτ (δ):ρ(eξ,j−eξ0(τ),j)≤ηj

∣∣νn−j(eξ,j − eξ0(τ),j

)∣∣)2

ϕ2
j ≥ ε/2

)

≤ 2

ε

K−1∑
j=1

lim sup
n→∞

E∗
(

sup
ξ∈Xτ (δ):ρ(eξ,j−eξ0(τ),j)≤ηj

∣∣νn−j(eξ,j − eξ0(τ),j

)∣∣)2

ϕ2
j

≤ 2

ε

K−1∑
j=1

(
lim sup
n→∞

E∗
(

sup
ξ∈Xτ (δ):ρ(eξ,j−eξ0(τ),j)≤ηj

∣∣νn−j(eξ,j − eξ0(τ),j

)∣∣)Q)2/Q

ϕ2
j

≤ 2ε′

ε

K−1∑
j=1

ϕ2
j ≤

2ε′

ε

∑
j>0

ϕ2
j =

( π
6ε

)
ε′,

where the first inequality is the Markov inequality, the second follows from Lemma A.4
below, the third is Jensen’s, and the equality uses ϕ2

j = 1/(2πj2) for j > 0.
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Now consider (A.6). The first term can be bounded by

2nM2|ξ̂n(τ)− ξ0(τ)|4
∑
j>0

ϕ2
j = Op(n

−1) = op(1).

By (4.3) and arguments as in the proof of Theorem 3.6, for a large enough M ′ the proba-
bility that the second term of (A.6) exceeds ε is at most

P
(
n
n−1∑
j=K

(
r̂n,τ (j)− r̃n,τ (j)

)2
ϕ2
j ≥ ε, |ξ̂n(τ)− ξ0(τ)| ≤M ′n−1/2

)
+ ε′

≤ P

(
n−1

n−1∑
j=K

( n∑
t=j+1

1{|Xt−ξ0(τ)|<|ξ̂n(τ)−ξ0(τ)|}

+ 1{|Xt−j−ξ0(τ)|<|ξ̂n(τ)−ξ0(τ)|}

)2

ϕ2
j ≥ ε, |ξ̂n(τ)− ξ0(τ)| ≤M ′n−1/2

)
+ ε′

≤ P

(
n−1

n−1∑
j=K

( n∑
t=j+1

1{|Xt−ξ0(τ)|≤M ′n−1/2}

)2

ϕ2
j

+ n−1

n−1∑
j=K

( n∑
t=j+1

1{|Xt−j−ξ0(τ)|≤M ′n−1/2}

)2

ϕ2
j ≥ ε/2

)
+ ε′

≤ 4

ε
E
(
n−1/2

n∑
t=1

1{|Xt−ξ0(τ)|≤M ′n−1/2}

)2∑
j≥K

ϕ2
j + ε′

≤ 4

ε

(
P
(
|X0 − ξ0(τ)| ≤M ′n−1/2

)
+ nP

(
|X0 − ξ0(τ)| ≤M ′n−1/2

)2
)∑
j≥K

ϕ2
j + ε′

= O(1)
∑
j≥K

ϕ2
j + ε′,

which can be made smaller than 2ε′ by choosing K large enough. This does not affect
any of the other bounds. Since ε′ was arbitrary, we have CM n,τ = ˜CM n,τ + op(1) and
CM n,τ  ‖Sτ‖2

Π, which proves the first result.
(ii) Fix some K ≤ n and decompose the statistic into

CM n(τ)/n =
K−1∑
j=1

(
r̂n,τ (j)− r̃n,τ (j)

)2
ϕ2
j + 2

K−1∑
j=1

(
r̂n,τ (j)− r̃n,τ (j)

)
r̃n,τ (j)ϕ

2
j

+
K−1∑
j=1

r̃n,τ (j)
2ϕ2

j +
n−1∑
j=K

r̂n,τ (j)
2ϕ2

j .

The first and second terms on the right-hand side of the displayed equation converge to zero
in probability as n→∞ because r̂n,τ (j)− r̃n,τ (j) = op(1) for each j under the assumptions
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of the theorem. The third term converges in probability to
∑K−1

j=1 rτ (j)
2ϕ2

j as n → ∞ by

Wu’s (2005) Theorem 2(i). The absolute value of the last term is bounded by
∑

j≥K ϕ
2
j ,

where I have used the fact that |r̂n,τ | ≤ 1. Hence, let K →∞ to conclude CM n(τ)/n→p∑
j>0 rτ (j)

2ϕ2
j > 0. The desired result now follows from a routine argument.

Lemma A.4. Suppose the assumptions of Theorem 4.1 hold. For every j > 0, every Q,
and every ε > 0, there is an η > 0 such that

lim sup
n→∞

E∗
(

sup
ξ,ξ′∈Xτ (δ):ρ(eξ,j−eξ′,j)≤η

| νn−j(eξ,j − eξ′,j)|
)Q
≤ ε.

Proof of Lemma A.4. Take a grid of points ξ0(τ)− δ = ξ0 < ξ1 < · · · < ξN = ξ0(τ) + δ and
let bk,j(Xt, Xt+j) := 1{Xt < ξk} − 1{Xt < ξk−1}+ 1{Xt+j < ξk} − 1{Xt+j < ξk−1}. Given
a ξ ∈ Xτ (δ), we can then find an index k such that |eξ,j − eξk−1,j| ≤ bk,j. Further,

ρ(bk,j) ≤ 2‖1{X0 < ξk} − 1{X0 < ξk−1}‖ ≤ 2
√
FX(ξk)− FX(ξk−1),

which is proportional to
√
ξk − ξk−1 due to Lipschitz continuity. If ρ(bk,j) ≤ ε for all

k = 1, . . . , N then, as above, for each j the parametric class Ej := {eξ,j : ξ ∈ Xτ (δ)}
has bracketing numbers with respect to ρ of order N(ε,Ej) = O(ε−2) as ε → 0. Hence,
bracketing integrals of the class H above and the classes Ej have the same behavior. The
proof of Lemma A.3 therefore also applies to this lemma as long as the reference to Lemma
A.2 is replaced by Lemma A.5 below.

Lemma A.5. Fix some γ > 0 and suppose that Assumption A holds. For all n ∈ N, all
j < n, all ξ, ξ′ ∈ Xτ (δ), and every even integer Q ≥ 2 we have

E| νn−j(eξ,j − eξ′,j)|Q ≤ (n− j)−Q/2C
(
(φ(eξ,j − eξ′,j)2(n− j))

+ · · ·+ (φ(eξ,j − eξ′,j)2(n− j))Q/2
)
,

where C depends only on j, Q, γ, and σ. The inequality remains valid when eξ,j − eξ′,j is
replaced by bk,j for any given k ≥ 1.

Proof of Lemma A.5. As in the proof of Lemma A.2, it suffices to show the inequality
given in the Lemma after dividing both sides by 4Q to ensure that the absolute value of

Et,t+j :=
(
eξ,j(Xt, Xt+j)− eξ′,j(Xt, Xt+j)− (Eeξ,j(X0, Xj)− Eeξ′,j(X0, Xj))

)
/4

is bounded by 1. Define E ′t,t+j in the same way as Et,t+j but replace Xt with X ′t and Xt+j

with X ′t+j. For fixed k ≥ 2, d ≥ 1, and 1 ≤ m < k, consider integers t1 ≤ · · · ≤ tm ≤
tm+1 ≤ · · · ≤ tk so that tm+1 − tm = d. Repeatedly add and subtract to see that∣∣EEt1,t1+j · · ·Etk,tk+j − EEt1,t1+j · · ·Etm,tm+jEEtm+1,tm+1+j · · ·Etk,tk+j

∣∣
=
∣∣EEt1−tm−j,t1−tm · · ·Etk−tm−j,tk−tm

− EEt1−tm−j,t1−tm · · ·E−j,0EEl−j,l · · ·Etk−tm−j,tk−tm
∣∣
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≤
∣∣EEt1−tm−j,t1−tm · · ·E−j,0(Ed−j,d − E ′d−j,d)

× Etm+2−tm−j,tm+2−tm · · ·Etk−tm−j,tk−tm
∣∣

+
k−m−1∑
i=2

∣∣EEt1−tm−j,t1−tm · · ·E−j,0E ′d−j,d × · · ·
× (Etm+i−tm−j,tm+i−tm − E ′tm+i−tm−j,tm+i−tm) · · ·Etk−tm−j,tk−tm

∣∣
+
∣∣EEt1−tm−j,t1−tm · · ·E−j,0E ′d−j,d · · ·E ′tk−tm−j,tk−tm

− EEt1−tm−j,t1−tm · · ·E−j,0EEl−j,l · · ·Etk−tm−j,tk−tm
∣∣,

where the last term on the right-hand side can again been seen to be zero.
Since j is fixed, it is possible to write ‖Ed−j,d − E ′d−j,d‖s ≤ ‖1{Xd < ξ} − 1{X ′d <

ξ}‖s + ‖1{Xd−j < ξ′} − 1{X ′d−j < ξ′}‖s ≤ C ′σd(1 + σ−j) for some C ′ > 0, where the cases
where d ≤ j were absorbed into C ′. The same can then be done for (1 + σ−j). Hence,
proceed exactly as above to find a constant M > 0 such that∣∣EEt1,t1+jEt2,t2+j · · ·Etk,tk+j

∣∣
≤
∣∣EEt1,t1+jEt2,t2+j · · ·Etm,tm+jEEtm+1,tm+1+j · · ·Etk,tk+j

∣∣+Mσdφ(eξ,j − eξ′,j)2.

The rest of the arguments in the proof of Lemma A.2 now go through without changes.
The proof for the bounding functions bk is almost identical and therefore omitted.

Proof of Corollary 4.5. (i) Theorem 1 of Lifshits (1982) guarantees that ‖Sτ‖2
Π has a con-

tinuous distribution function, and therefore cn,τ (1 − α) → c∞,τ (1 − α) by Lemma 21.2 of
van der Vaart (1998), where c∞,τ is the quantile function of ‖Sτ‖2

Π. Hence, CM n,τ−cn,τ (1−
α)  ‖Sτ‖2

Π − c∞,τ (1 − α) and, in particular, ‖Sτ‖2
Π − c∞(1 − α) also has a continuous

distribution function. This in turn implies∣∣P(CM n,τ > cn,τ (1− α)
)
− α

∣∣ =
∣∣P(CM n,τ ≤ cn,τ (1− α)

)
− P

(
‖Sτ‖2

Π ≤ c∞,τ (1− α)
)∣∣→ 0.

(ii) Let CM∞,τ :=
∑

j>0 rτ (j)
2ϕ2

j and pick an ε > 0 such that CM∞,τ − ε > 0. By
Theorem 4.1(ii) and the properties of quantile functions,

P
(
CM n,τ ≤ cn,τ (1− α)

)
≤ 1
(
cn,τ (1− α) > n(CM∞,τ − ε)

)
+ P(|CM n,τ/n− CM∞,τ | ≥ ε)

= 1
(
1− α > P(CM ′

n,τ/n ≤ CM∞,τ − ε)
)

+ o(1).

It therefore suffices to show that CM ′
n,τ/n →p 0, which follows from an application of

Birkhoff’s Ergodic Theorem to the first term on the right-hand side of

n−1CM ′
n,τ ≤

K−1∑
j=1

(
n−1

n∑
t=1+j

(τ − Jt)(τ − Jt−j)
)2

ϕ2
j +

∑
j≥K

ϕ2
j

and then letting K →∞.
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Proof of Theorem 4.7. (i) Recall that rτ (j) = 0 for all j > 0 under the null hypothesis and
let r̃∗n,τ (j) := n−1

∑n
t=j+1 Vt(τ)Vt−j(τ)ωt. We can write CM ∗

n,τ = ‖S∗n,τ‖2
Π, where S∗n,τ is

n−1/2

n−1∑
j=1

( n∑
t=j+1

(
V̂t(τ)V̂t−j(τ)− Vt(τ)Vt−j(τ)

)
ωt

)
ψj(λ) (A.7)

− n−1/2

n−1∑
j=1

r̂n,τ (j)ψj(λ)

( n∑
t=j+1

ωt

)
+
√
n

n−1∑
j=1

r̃∗n,τ (j)ψj(λ). (A.8)

As a preliminary step, I show that the L2(Π)-norms the first two terms have a P̂-
probability limit of zero with high P-probability; the L2(Π)-norm of the third term con-
verges P̂-weakly in P-probability to ‖Sτ‖2

Π by Shao’s (2011a) Theorem 3.1. I then use these
results below to prove that the bootstrap test has asymptotic size α.

The P̂-expectation of the square of the L2(Π)-norm of (A.7) can be written as

Ê
∥∥∥∥n−1/2

n−1∑
j=1

( n∑
t=j+1

(
V̂t(τ)V̂t−j(τ)− Vt(τ)Vt−j(τ)

)
ωt

)
ψj

∥∥∥∥2

Π

= n−1

n−1∑
j=1

ϕ2
j

Ln∑
s=1

( ∑
t∈Bs∩[j+1,n]

(
V̂t(τ)V̂t−j(τ)− Vt(τ)Vt−j(τ)

))2

.

Fix ε, ε′ > 0 and pick a large enough M > 0 such that supn∈N P(|ξ̂n(τ)−ξ0(τ)| > Mn−1/2) <
ε′. As in the proof of Theorem 4.1(i), the probability that the term on the right is larger
than ε is at most ε′ plus

2

ε

n−1∑
j=1

ϕ2
jn
−1

Ln∑
s=1

E
( ∑
t∈Bs∩[j+1,n]

1{|Xt−ξ0(τ)|≤Mn−1/2}

)2

≤ 2

ε

n−1∑
j=1

ϕ2
jb
−1
n

(
bnP
(
|X0 − ξ0(τ)| ≤Mn−1/2

)
+ b2

nP
(
|X0 − ξ0(τ)| ≤Mn−1/2

)2
)

≤ 2

ε

(
O(n−1/2) +O(bn/n)

)∑
j>0

ϕ2
j ,

which can be made arbitrarily small by first letting n→∞ and then M →∞.
Now consider the P̂-expectation of the square of the L2(Π)-norm of (A.8), which can be

written as

Ê
∥∥∥∥n−1/2

n−1∑
j=1

r̂n,τ (j)

( n∑
t=j+1

ωt

)
ψj

∥∥∥∥2

Π

= n−1

n−1∑
j=1

r̂n,τ (j)
2ϕ2

j

Ln∑
s=1

Ê
( ∑
t∈Bs∩[j+1,n]

ωt

)2

≤ bn

n−1∑
j=1

r̂n,τ (j)
2ϕ2

j
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≤ 2bn

n−1∑
j=1

(
r̂n,τ (j)− r̃n,τ (j)

)2
ϕ2
j + 2bn

n−1∑
j=1

r̃n,τ (j)
2ϕ2

j

by the Loève cr inequality. The first term on the right-hand side of the display converges
to zero in probability by arguments similar to those given in the proof of Theorem 4.1(i)
provided that bn/n → 0. The second term is Op(bn/n) by Corollary 2.1 of Shao (2011a).

It follows that supx |P̂(CM ∗
n,τ ≤ x)− P(‖Sτ‖2

Π ≤ x)| = op(1).
Theorem 1 of Lifshits (1982) and Lemma 21.2 of van der Vaart (1998) then give c∗n,τ (1−

α)→p c∞(1− α). Thus, CM n,τ − c∗n,τ (1− α) ‖Sτ‖2
Π − c∞,τ (1− α), which yields∣∣P(CM n,τ > c∗n,τ (1− α)

)
− α

∣∣
=
∣∣P(CM n,τ ≤ c∗n,τ (1− α)

)
− P

(
‖Sτ‖2

Π ≤ c∞,τ (1− α)
)∣∣→ 0.

(ii) Recall that CM∞,τ =
∑

j>0 rτ (j)
2ϕ2

j . Pick an ε > 0 such that CM∞,τ > ε and, as
in the proof of Corollary 4.5(ii), the properties of quantile functions and Theorem 4.1(ii)
imply

P
(
CM n,τ ≤ c∗n,τ (1− α)

)
≤ P

(
c∗n,τ (1− α) > n(CM∞,τ − ε)

)
+ P(|CM n,τ/n− CM∞,τ | ≥ ε)

= P
(
1− α > P̂(CM ∗

n,τ/n ≤ CM∞,τ − ε)
)

+ o(1).

Hence it suffices to show that ÊCM ∗
n,τ/n→p 0, which is seen from

n−1ÊCM ∗
n,τ = n−2

n−1∑
j=1

ϕ2
j

Ln∑
s=1

( ∑
t∈Bs∩[j+1,n]

(
V̂t(τ)V̂t+j(τ)− r̂n,τ (j)

))2

≤ 4
bn
n

∑
j>0

ϕ2
j

almost surely and bn/n→ 0.
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