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In this paper, I introduce a simple test for the presence of the data-generating
process among several non-nested alternatives. The test is an extension of the
classical J test for non-nested regression models. I also provide a bootstrap
version of the test that avoids possible size distortions inherited from the J
test.
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1. Introduction

Non-nested testing problems typically do not have a natural null hypothesis. For example,
it is a priori not clear what should be the null hypothesis when testing whether a specific
covariate enters the regression equation in level or in log form. For the Davidson and
MacKinnon (1981) J test and the Cox (1961, 1962) test, the literature therefore usually
suggests a sequence of tests where each possible null hypothesis is considered; see, among
others, Fisher and McAleer (1979), Dastoor (1981), and Pesaran and Weeks (2003). In
this paper, I introduce a simple test for the presence of the correct model among several
non-nested specifications that avoids sequential testing. The test, which I refer to as the
MJ (minimum J) test, is an extension of the J test and bases its decision on the model
with the least significant J statistic.

Non-nested hypothesis tests such as the J or the Cox tests rely heavily on the assumption
that one of the models under consideration is correct, and therefore all other non-nested
specifications must be wrong. However, it may well happen that a non-nested hypothesis
test does not reject a model in the presence of an alternative model, but also does not reject
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the alternative in the presence of the original model when the hypotheses are reversed.
This leaves the researcher in the unfortunate situation of having to conclude that both
specifications “explain the data equally well” even though at most one of them can be
correct. Similar problems arise when all models are rejected. A further issue is that
the sequential testing is typically conducted without regard to overall size, and thus two
researchers working with the same data can arrive at different specifications simply because
they used different levels of significance. Non-nested testing procedures have been subject
to substantial criticism because of these features; see, e.g., Granger, King, and White
(1995) and Shi (2010).

I show that the MJ test is robust to each of these concerns: It does not require the correct
model to be among the considered specifications and avoids ambiguous test outcomes.
The MJ test determines with asymptotically correct size if the correct model is among
the specifications under consideration. If the correct model is present, it is chosen with
probability approaching one as the sample size becomes large. I also provide a bootstrap
version of the MJ test that possesses all of these properties.

As the Monte Carlo study in this paper shows, the bootstrap is crucial here because
the MJ test can over-reject in empirically relevant cases, but a careful application of the
bootstrap transforms it into an almost exact test even in quite small samples. This feature
of the MJ test is inherited from the traditional J test, which is known to over-reject severely
(Godfrey and Pesaran, 1983) unless the bootstrap is used; see Fan and Li (1995), Godfrey
(1998), and Davidson and MacKinnon (2002). My simulation study also suggests that the
bootstrap test has good power except when the researcher makes a particularly bad guess
about the correct model, i.e., when there is little correlation between the designs of the
true model and the models under consideration.

The paper is organized as follows: Section 2 establishes the large sample properties of
the MJ test. Section 3 discusses bootstrap methods. Section 4 contains the simulation
study. Section 5 concludes. The Appendix presents auxiliary results and proofs.

I will use the following notation throughout the paper: For an index set of increasing
integers I = {1, . . . , I}, (ai)i∈I denotes the column vector (a1, a2, . . . , aI)

> ∈ RI , and an
I×I matrix with generic element ai,i′ in its ith row and i′th column is denoted by (ai,i′)i,i′∈I .
If the integers in I are not consecutive, the notation is meant to indicate that the ai and
ai,i′ enter (ai)i∈I and (ai,i′)i,i′∈I sequentially from smallest to largest index. Convergence
in distribution as n→∞ is denoted by  ; | · | is the Euclidean norm.

2. The MJ Test for Non-Nested Regression Models

This section extends the J test for non-nested linear regression models to handle het-
eroscedastic errors. I then introduce the MJ test (Procedure 2.6 below).

Suppose we observe covariates {(x>i,1, . . . , x>i,M)> ∈ Rd1+···+dM : i = 1, . . . , n} that give
rise to M ≥ 2 different possible linear regression models for y := (y1, . . . , yn)> ∈ Rn, i.e.,

y = Xmβm + um, m ∈M := {1, . . . ,M}, (2.1)
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where Xm := (x1,m, . . . , xn,m)> ∈ Rn×dm is the design matrix of model m. The matrices
X1, . . . , XM are assumed to be non-nested, i.e., for any two matrices with index m 6= l in
M, no matrix can be obtained from another by a linear transformation. This does not rule
out the possibility that some of the columns of Xm and Xl are identical or that they may be
nonlinear transformations of one another. In addition, there is an observed or unobserved
design matrix Xm∗ := (x1,m∗ , . . . , xn,m∗)

> associated with the correct model m∗. Suppose
that F := {Xm : m ∈M∪ {m∗}} has the following properties:

Assumption 2.1. {(yi, (xi,m)>m∈M∪{m∗})
> : i ≥ 1} is a sequence of iid random vectors. We

have E |xi,m|4 < ∞ for all m ∈ M∪ {m∗}, where the number of elements of M does not
depend on n. For all m ∈M, the matrices Exi,mx>i,m are positive definite.

Tests constructed for non-nested environments such as the Davidson and MacKinnon
(1981) J test typically assume that there is an m∗ ∈ M such that the conditional mean
of y can be written as E(y | F) = Xm∗βm∗ . In the following, I depart from this condition
and only assume that a correct specification exists.

Assumption 2.2. Model m∗ satisfies E(y | F) = Xm∗βm∗ . Let ui,m∗ := yi − x>i,m∗βm∗ for
all i ≥ 1 and Eu4i,m∗ <∞.

Remarks. 1. Although I only consider linear regression models with independent data,
the results of the paper can be extended to nonlinear (parametric) models with weakly
dependent data; see also the discussion below Theorem 2.7.

2. Davidson and MacKinnon (1981) point out that the assumption m∗ ∈M is not crucial
since the J test is capable of rejecting all models in M.

The setup of the J test presumes that for some predetermined m ∈ M, the researcher
wants to test the null hypothesis m = m∗ against m 6= m∗ in the presence of the non-nested
alternatives l ∈M \ {m}. This can be done by artificially nesting the models in (2.1) via
an additional parameter vector αm := (αl,m)l∈M\{m} ∈ RM−1 such that

y = Xmbm +
∑

l∈M\{m}

αl,mXlβl + u, where bm :=

(
1−

∑
l∈M\{m}

αl,m

)
βm.

Since the vectors (αl,m, βl)l∈M\{m} of the nesting model may not be identified, Davidson
and MacKinnon replace the βl in the preceding display by the least squares (LS) estimates
β̂l = (X>l Xl)

−1X>l y. After redefining the error term appropriately, this yields

y = Xmbm +
∑

l∈M\{m}

αl,mXlβ̂l + u, (2.2)

which can be estimated by LS. A Wald test for αm = 0 is a J test for the validity of model
m in the presence of the alternatives M\ {m}. To construct the test statistic, let

λn,m := n−1/2
(
y>PlMmy

)
l∈M\{m}

and
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Σ̂n,m := n−1
(
y>PlMmΩ̂n,mMmPl′y

)
l,l′∈M\{m}

,

where Pm := Xm(X>mXm)−1X>m and Mm := In − Pm are the usual projection matrices and
Ω̂n,m is an “estimate” of E(um∗u

>
m∗ | F). The J test statistic for model m is then

Jn,m := λ>n,mΣ̂−1n,mλn,m, (2.3)

and the hypothesis that model m is the true model is rejected for large values of Jn,m. In
practice, the J statistic is easily computed by running regression (2.2) and performing a
Wald test for αm = 0 with weighting matrix Ω̂n,m.

Given the independence of the observations, Ω̂n,m should be a diagonal matrix of squared
residuals. For heteroscedasticity-robust testing, the literature frequently recommends using
the residuals of the model under the null hypothesis; see, e.g., Davidson and MacKinnon
(1985). Hence, I use the residuals ûi,m := yi − x>i,mβ̂m and define

Ω̂n,m := diag(û21,m, . . . , û
2
n,m),

although other approaches are clearly possible. If Assumptions 2.1 and 2.2 hold, I show in
Appendix A that we can then write Σ̂m = Σm + Πm + oP(1), where Σm is Σ̂n,m with prod-

ucts of the form n−1X>mXl replaced by Exi,mx>i,l and products of the form n−1X>l Ω̂n,mXl′

replaced by E(u2i,m∗xi,lx
>
i,l′), and Πm is a positive semi-definite matrix; in particular, Πm∗

is equal to zero. To ensure that the J statistics are well behaved in large samples, I make
the following assumption:

Assumption 2.3. For all m ∈M, Σm is positive definite.

Remarks. Assumption 2.3 is needed to identify the artificial parameters αm, m ∈M. This
condition fails when the covariates of m∗ are completely uncorrelated with the covariates
of one of the models in M or when the design matrices of any two models in M are
nested, i.e., one matrix is a linear transformation of the other. Michelis (1999) discusses
the consequences of near-singularity of Σm for the case M = 2.

For the J test to have power against the alternative m∗ 6∈ M, I also assume that the
covariates of m∗ have enough idiosyncratic variation so that the following condition holds:

Assumption 2.4. For all m ∈M \ {m∗}, there exists l ∈M such that

|β>m∗ Exi,m∗x>i,l(Exi,lx>i,l)−1[Exi,lx>i,m∗
− Exi,lx>i,m(Exi,mx>i,m)−1 Exi,mx>i,m∗ ]βm∗| > 0.

(2.4)

Remarks. In addition to the restrictions imposed via Assumption 2.3, this property rules
out that the covariates of m∗ are fully correlated with (but not identical to) the covariates
of any model m in M, e.g., if Xm = Xm∗ + Z, where Z is an independent measurement
error with mean zero. In such a case, the J test would mistake Xm for Xm∗ .
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The following Lemma summarizes the large sample properties of the Jn,m statistics under
Assumptions 2.1–2.4.

Lemma 2.5. Suppose Assumptions 2.1–2.4 are satisfied.
(i) If m∗ ∈M, then Jn,m∗  χ2

M−1.
(ii) For every m ∈M \ {m∗} and every B ∈ R, we have limn→∞ P(Jn,m > B) = 1.

The J test does not have a natural null hypothesis, and therefore the researcher is
expected to have a preferred model m to test the null hypothesis m = m∗. Because there
is usually little guidance in applied work about what m could be, this makes a seemingly
simple task such as testing whether to include a specific covariate in level or in log form
a surprisingly difficult problem. However, a closer look at Lemma 2.5 reveals an easy way
out of this dilemma: If one of the models under consideration is the correct model, then its
J statistic has an asymptotic distribution and the statistics of the other models diverge;
if, instead, the correct model is not among the M models, then all statistics will diverge.
Thus, only the model with the smallest J statistic can possibly be the correct model and
we can reject the hypothesis m∗ ∈M when the smallest J statistic is large. This motivates
the following alternative to the traditional sequential testing procedures:

Procedure 2.6 (MJ Test). 1. For each m ∈M, run regression (2.2) and compute Jn,m
as in (2.3). Let Jn := {Jn,m : m ∈M} and define MJ n := minJn.

2. Reject the hypothesis H0 : m∗ ∈ M in favor of H1 : m∗ 6∈ M if MJ n > c1−α, where
c1−α is the 1− α quantile of the χ2

M−1 distribution.

As a referee points out, the MJ test is an instance of an intersection–union test (Berger,
1982): The null hypothesis is the union of different nulls, and the rejection region is thus
the intersection of the rejection regions of the respective nulls. Indeed, the null is that one
of the models inM is correctly specified, but it can be any of them, so that the null is the
union of the sets of data-generating processes, each of which constitutes one of the models
in M, and, for the null to be false, each of those hypotheses must be false.

The following Theorem shows that the MJ test is indeed a valid test for m∗ ∈ M and,
in particular, the asymptotic distributions of Jn,m∗ and MJ n coincide. The reason for this
result is that the number of models in M does not depend on n and the M different J
statistics are asymptotically independent since M − 1 of them diverge—two features that
are typically not available for nested testing problems, but can be exploited in non-nested
environments to construct simple tests such as Procedure 2.6.

Theorem 2.7. Suppose Assumptions 2.1–2.4 are true.
(i) If m∗ ∈M, then MJ n  χ2

M−1 and
(ii) if m∗ 6∈ M, then limn→∞ P(MJ n > B) = 1 for all B ∈ R.

Remarks. 1. The J test can be generalized to nonlinear regressions (Davidson and MacK-
innon, 1981), and to models with dependent errors via standard heteroscedasticity and
autocorrelation consistent covariance matrix estimators or fixed-b asymptotics as in Choi
and Kiefer (2008). See also MacKinnon, White, and Davidson (1983) for an extension to
models with weakly dependent and endogenous covariates. Since the MJ test is nothing
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but a J test for a specific model, these generalizations are also available for the minimum
J approach as long as an identification condition analogous to (2.4) holds.

2. Related tests for non-nested models such as the JA test of Fisher and McAleer (1981)
can be extended in a similar way.

The MJ test chooses a model m̂ = arg minJn for the test, and if the test provides evi-
dence that m∗ ∈ M, then m̂ is the natural candidate for m∗. This can be interpreted as
the non-nested analogue of general-to-specific testing: Selecting m̂ amounts to choosing a
model for which there is the most evidence that it is not outperformed by the other models
under consideration in terms of explanatory power. Indeed, as the following Lemma shows,
the MJ test consistently finds the true model among the specifications, both uncondition-
ally and conditional on having accepted the null hypothesis:

Lemma 2.8. If Assumptions 2.1–2.4 hold and m∗ ∈M, then limn→∞ P(m̂ = m∗) = 1 and
limn→∞ P(m̂ = m∗ | MJ n ≤ c1−α) = 1.

The Monte Carlo results in Section 4 show that m̂ reliably chooses the correct model, but
nonetheless one should be careful about how to proceed from there; see Leeb and Pötscher
(2009) and the references therein.

The MJ test might be expected to inherit the well-known size distortion present in the
J test (see Davidson and MacKinnon, 2002, and the references therein). However, I will
show in Section 4 that these effects can be ameliorated as long as the bootstrap is used.
The next section provides the necessary modifications.

3. Bootstrapping the MJ Test Statistic

This section presents a bootstrap version of the MJ test (Procedure 3.1). The idea is to
replace Jn,m̂ in Jn by realizations of a bootstrap J statistic such that repeatedly computing
the minimum over this new set of J statistics mimics the behavior of MJ n. To account
for the possible heterogeneity in the errors, I use the wild bootstrap of Liu (1988) and
Mammen (1992); it perturbs the residuals with iid copies η1, η2, . . . of a random variable
η with E(η | y,F) = 0, E(η2 | y,F) = 1 and E(|η|2+δ | y,F) <∞ for some δ > 0. Let also
H := diag(η1, . . . , ηn).

Procedure 3.1 (Bootstrap MJ Test). Let m̂ = arg minJn. (If arg minJn is not unique,
choose m̂ to be any element of arg minJn.)

1. (a) Use LS to obtain the residuals û = y −Xm̂β̂m̂ and compute u∗ := Hû.
(b) Generate bootstrap data y∗ := Xm̂β̂m̂ + u∗ and calculate

λ∗n,m̂ := n−1/2
(
y∗>PlMm̂y

∗
)
l∈M\{m̂}

and

Σ̂∗n,m̂ := n−1
(
y∗>PlMm̂Ω̂n,m̂Mm̂Pl′y

∗
)
l,l′∈M\{m̂}

.
(3.1)

(c) Compute the bootstrap J statistic J∗n,m̂ := λ∗>n,m̂Σ̂∗−1n,m̂λ
∗
n,m̂.
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2. Let J ∗n := {J∗n,m̂} ∪ Jn \ {Jn,m̂} and calculate MJ ∗n := minJ ∗n .
3. Repeat steps 1–2 R times, each with a new realization of H. Reject the hypothesis
m∗ ∈M if MJ n is larger than c∗n,1−α, the 1− α empirical quantile of the MJ ∗n.

Remarks. 1. The recommended choice for η in practice is a Rademacher variable that takes
on the value 1 with probability 1/2 and the value −1 with probability 1/2. Distributions
other than the Rademacher distribution could be used for η, in particular if the error
distribution is skewed, but there is no evidence that they would lead to better inference;
see Davidson, Monticini, and Peel (2007) for a discussion.

2. Step 1 is similar to the standard residual bootstrap used in Fan and Li (1995), Godfrey
(1998), and Davidson and MacKinnon (2002), who deal with homoscedastic errors; Choi
and Kiefer (2008) use the block bootstrap. None of these authors establish the validity of
their bootstrap method.

3. There is no need to approximate Ω̂n,m̂ in Σ̂∗n,m̂ by a bootstrap version because the

variance of the bootstrap errors u∗ is var(u∗u∗> | y,F) = Ω̂n,m̂; see also Flachaire (2002).
4. Step 1 only approximates the distribution of Jn,m̂ conditional on m̂, and computing the

minimum over the J statistics after replacing Jn,m̂ with J∗n,m̂ in step 2 mimics the additional
randomness from choosing m̂ out of the M models. If m∗ ∈M, m̂ and the minimizer of J ∗n
coincide in large samples, and hence this step is not crucial for the validity of the bootstrap.
However, the simulation study in Section 4 suggests that, if anything, the Bootstrap MJ
test can behave conservatively in small samples. Step 2 can therefore improve both the
size and power of the bootstrap test in finite samples because it restricts the magnitude of
large realizations of J∗n,m̂.

By choosing the number of bootstrap repetitions R in Procedure 3.1 large enough, we can
approximate the quantiles of the distribution of MJ ∗n with arbitrary precision. I therefore
let R → ∞ in the following and define the quantiles of MJ ∗n directly as c∗n,1−α := inf{x ∈
R : P∗(MJ ∗n ≤ x) ≥ 1− α}, where P∗(·) abbreviates P(· | y,F).

To ensure that the bootstrap approximation is well-behaved, a further condition similar
to Assumption 2.3 is needed: Since E(X>l u

∗ | y,F) = 0 and var(X>l u
∗/n | y,F) =

X>l Ω̂Xl/n
2 = oP(1) provided Assumptions 2.1 and 2.2 hold, we can with P-probability

approaching one as n→∞ write

Σ̂∗n,m = n−1
(
β̂>mX

>
mPlMmΩ̂n,mMmPl′Xmβ̂m

)
l,l′∈M\{m}

+ oP∗(1).

Define Ξ̂n,m as the first term on the right-hand side. In the same way as Σ̂n,m = Σm +

Πm+oP(1), it can be seen that Ξ̂n,m = Ξm+Ψm+oP(1), where Ξm is Ξ̂n,m with expressions

of the form n−1X>mXl replaced by Exi,mx>i,l and expressions of the form n−1X>l Ω̂n,mXl′

replaced by E(u2i,m∗xi,lx
>
i,l′); Ψm is a positive semi-definite matrix with Ψm∗ equal to zero.

Details are provided in Appendix A. I impose the following condition:

Assumption 3.2. For all m ∈M, Ξm is positive definite.

Remarks. In addition to the restrictions imposed by Assumptions 2.3 and 2.4, this condition
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rules out that the covariates of any two models inM are orthogonal. In practice, it should
not limit the applicability of the Bootstrap MJ test because all models under consideration
are supposed to explain the same variable y. Therefore, it is not much of a restriction to
assume that they have some common features.

The following result establishes the consistency of the Bootstrap MJ test.

Theorem 3.3. Suppose Assumptions 2.1–2.4 and 3.2 hold with E |ui,m∗|4+δ < ∞ and
E |xi,m|4+δ <∞ for all m ∈M∪ {m∗} and some δ > 0. Let α ∈ (0, 1). Procedure 3.1 has
the following properties:

(i) If m∗ ∈M, then limn→∞ P(MJ n > c∗n,1−α) = α, and
(ii) if m∗ 6∈ M, then limn→∞ P(MJ n > c∗n,1−α) = 1.

The consistency of m̂ conditional on accepting the null hypothesis of the bootstrap test
is then an immediate consequence.

Corollary 3.4. Suppose the conditions of Theorem 3.3 are satisfied. If m∗ ∈ M, then
limn→∞ P(m̂ = m∗ | MJ n ≤ c∗n,1−α) = 1.

The next section illustrates this consistency property and the finite sample behavior of the
MJ and Bootstrap MJ tests in a small simulation study.

4. Simulation Study

The J test is known to severely over-reject when (1) the sample size is small, (2) the
error variance is large, (3) the number of regressors differs among the models, or (4) the
correlation between the models under consideration is small; see Davidson and MacKinnon
(2002) for a thorough analysis of why this is the case. Focusing on the correlation structure,
this section investigates the impact of these properties on the performance of the MJ test
and the Bootstrap MJ test.

The true model m∗ for the following experiments is

yi = x>i,m∗βm∗ + ui, ui = (vi − 1)[|xi,1,m∗xi,2,m∗|(|xi,3,m∗|+ 2.5)]1/2,

where βm∗ is a dm∗-vector of ones, the first element of xi,m∗ is one and the other components,
denoted as (xi,2,m∗ , . . . , xi,dm∗ ,m∗)

>, are uncorrelated standard normal variables; the vi are
independently distributed as χ2

1. I experimented with the form of the heteroscedasticity in
ui, but found that it had little effect on the performance of the bootstrap test. I therefore
settled for a worst-case scenario and chose an error structure that is known to cause size
distortions when heteroscedasticity-robust estimators are employed (see Long and Ervin,
2000). The covariates xi,m = (xi,1,m, . . . , xi,dm,m)> of any other model m ∈ M \ {m∗} are
given by xi,1,m = 1,

xi,j,m =
ρ√

1− ρ2
xi,j,m∗ + zi,j,m, j = 2, . . . ,min{dm∗ , dm},
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Figure 1: Panels (a)–(e) show rejection frequencies of the MJ test (dashed line) and Bootstrap MJ test
(solid) under H0 with M = 2 at the 5% level (dotted) for different values of ρ as a function of sample
size n. Panel (f) plots the relative frequency of the event m̂ = m∗ for the experiments in panels (a)–(e)
as a function of n.

and xi,j,m = zi,j,m for dm > dm∗ , where the zi,j,m are independent standard normals. This
ensures that the correlation between the random components of xi,m∗ and the corresponding
components of xi,m is exactly ρ.

I used 10,000 replications for each sample size n ∈ {10, 20, . . . , 500} to investigate the
behavior of the MJ test for M ∈ {2, 3} and ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} under both the null
and the alternative hypothesis. For each of these cases, I recorded the test decision of the
MJ test at a significance level of 5% and the model m̂ with the smallest J statistic. I
used the warp-speed method of Giacomini, Politis, and White (2007) to estimate size and
power of the Bootstrap MJ test; this method considerably sped up the simulations because
only one bootstrap replication per Monte Carlo replication was needed. For notational
simplicity, let also m∗ = 1 when m∗ ∈M.
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Panels (a)–(e) of Figure 1 show the rejection frequencies of the MJ test and the bootstrap
version for the case M = 2 when H0 : m∗ ∈ M is true as a function of n and ρ. Here
and in the following, I used the same sequence of random numbers for each correlation
structure in order to make the results comparable. The number of regressors in the true
model was dm∗ = 5 and the other specification had d2 = 7 covariates. The MJ test over-
rejected severely in all cases at all sample sizes, although the size of the test improved
considerably in larger samples for ρ ∈ {0.3, 0.5, 0.7, 0.9}. The case ρ = 0.9 was the slowest
to adjust because the two models under consideration were so similar. The MJ test broke
down completely for ρ = 0.1 because the distribution of the J test statistic is not well
approximated by the χ2

1 distribution when the correlation among the models is small; see
Davidson and MacKinnon (2002). In contrast, the Bootstrap MJ test was almost exact
for ρ ∈ {0.5, 0.7, 0.9} at all sample sizes, and behaved mildly conservatively for the low
correlation structures. Experiments with larger values of d2 and larger variation in vi
increased the size distortion of the MJ test even further, whereas the Bootstrap MJ test
remained unaffected.

The last panel in Figure 1 shows the relative number of times m̂ was indeed the true
model in the experiments presented in panels (a)–(e). Selecting the model with the smallest
J statistic worked well in small samples even when the models were highly correlated. In
samples larger than 100 (not reported), the selection frequency of the true model was
essentially one.

Table 1: Conditional and Unconditional Selection Frequencies

Relative Frequency of m̂ = m∗

Unconditional · | MJ n ≤ c1−α · | MJ n ≤ c∗n,1−α
n = 30 ρ = 0.9 0.855 0.921 0.858

ρ = 0.5 0.940 0.996 0.948
ρ = 0.1 0.902 0.998 0.908

n = 60 ρ = 0.9 0.933 0.979 0.936
ρ = 0.5 0.986 1.000 0.989
ρ = 0.1 0.950 1.000 0.958

n = 90 ρ = 0.9 0.967 0.997 0.970
ρ = 0.5 0.996 1.000 0.997
ρ = 0.1 0.967 1.000 0.976

Figure 1 does not show the selection frequencies conditional on accepting the null hypoth-
esis since the warp-speed method cannot estimate this quantity for the Bootstrap MJ test.
I therefore calculated the actual rejection and selection frequencies for n ∈ {30, 60, 90};
the bootstrap test was based on R = 399 bootstrap replications. As Table 1 shows, the
conditional selection frequencies for the Bootstrap MJ test and the relative frequencies of
the event m̂ = m∗ were almost identical. The discrepancy was larger for the conditional
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Figure 2: Rejection frequencies of the Bootstrap MJ test under H1 with M = 2 at the 5% level for different
values of ρ as a function of sample size n.

selection frequencies based on the MJ test, which was mostly driven by its inability to
control the nominal size.

Figure 2 plots the rejection frequency of the Bootstrap MJ test for M = 2 under
H1 : m∗ 6∈ M as a function of n and ρ. I do not report power estimates for the MJ
test because its size distortion invalidates the power estimates. As before, the true model
had dm∗ = 5 covariates, and the other specifications had d1 = 5 and d2 = 7 regressors.
The bootstrap test had good power in moderately large samples as long as the correlation
between the models in M and the true models was high. However, the power dropped
considerably for ρ = 0.5 and was essentially zero for smaller correlations. Hence, if the
researcher uses models that are very different from the correct model, the Bootstrap MJ
test will most likely not be able to detect this problem. Experiments with larger error
variances gave qualitatively similar results, but larger sample sizes were required to reach
the same level of power. I also experimented with the number of covariates of the models
in M, but found that the impact was relatively small.

Figure 3 repeats the experiments shown in Figure 1 for M = 3. The models under
consideration now had dm∗ = 5, d2 = 5, and d3 = 7 regressors. The size distortion of
the MJ test was even more extreme than before, whereas the Bootstrap MJ test was less
conservative and even more precise than in the case M = 2. The selection frequency of the
true model was slightly worse and larger samples were needed to reliably detect the true
model.

Finally, Figure 4 shows the power experiment from Figure 2 for M = 3. The true model
had dm∗ = 5 regressors, and the models in M now had d1 = 5, d2 = 6, and d3 = 7
covariates, but the results remained almost unchanged.
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Figure 3: Panels (a)–(e) show rejection frequencies of the MJ test (dashed line) and Bootstrap MJ test
(solid) under H0 with M = 3 at the 5% level (dotted) for different values of ρ as a function n. Panel (f)
plots the relative frequency of the event m̂ = m∗ for the experiments in panels (a)–(e) as a function of
n.
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Figure 4: Rejection frequencies of the Bootstrap MJ test under H1 with M = 3 at the 5% level for different
values of ρ as a function of sample size n.

5. Conclusion

In this paper, I introduced a simple test for the presence of the data-generating process
among several non-nested regression models. In contrast to classical approaches to non-
nested testing, the MJ test does not require the correct model to be among the considered
specifications and avoids ambiguous test outcomes.

Appendix

A. Auxiliary Results and Definitions

This section states two results that are needed for the proofs below and defines Σ̂n,m =

Σm + Πm + oP(1) and Ξ̂n,m = Ξm + Ψm + oP(1) explicitly. To simplify notation, for a
random variable Z and random sequences Zn,Z ′n, the expression “Zn  Z in probability”
abbreviates “P(supz |P∗(Zn ≤ z) − P(Z ≤ z)| > ε) = o(1) for every ε > 0,” and “Zn =
Z ′n+oP∗(1) in probability” abbreviates “P(P∗(|Zn−Z ′n| > ε) > ε) = o(1) for every ε > 0.”
The Frobenius norm

√
trace(A>A) of a matrix A is denoted by ‖A‖.

Given any m, l, l′ ∈ M, repeated application of the Law of Large Numbers yields
n−1X>l Ω̂m,nXl′ = E(u2i,m∗xi,lx

>
i,l′) + E[(x>i,m∗βm∗ − x>i,mβm)2xi,lx

>
i,l′ ] + oP(1), provided that

Assumptions 2.1 and 2.2 hold, where βm := (Exi,mx>i,m)−1 Exi,mx>i,m∗βm∗ . Define Γm,l :=
(Exi,mx>i,m)−1 Exi,mx>i,l and υ2i,m := (x>i,m∗βm∗ − x>i,mβm)2; then

n−1y>PlMmΩ̂n,mMmPl′y
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=
[
β>m∗Γ

>
l,m∗

(
E(u2i,m∗xi,lx

>
i,l′)− Γ>m,l E(u2i,m∗xi,mx

>
i,l′)

+ Γ>m,l E(u2i,m∗xi,mx
>
i,m)Γm,l′ − E(u2i,m∗xi,lx

>
i,m)Γm,l′

)
Γl′,m∗βm∗

]
+
[
β>m∗Γ

>
l,m∗

(
E(υ2i,mxi,lx

>
i,l′)− Γ>m,l E(υ2i,mxi,mx

>
i,l′)

+ Γ>m,l E(υ2i,mxi,mx
>
i,m)Γm,l′ − E(υ2i,mxi,lx

>
i,m)Γm,l′

)
Γl′,m∗βm∗

]
+ oP(1).

Denote the first term in square brackets by σm,l,l′ and the second term in square brackets
by πm,l,l′ . Define Σm := (σm,l,l′)l,l′∈M\{m} and Πm := (πm,l,l′)l,l′∈M\{m}. Similarly, replace
y by Pmy, Γl,m∗βm∗ by Γl,mΓm,m∗βm∗ , and Γl′,m∗βm∗ by Γl′,m × Γm,m∗βm∗ in the preceding
display to define ξm,l,l′ as the resulting first term in square brackets and ψm,l,l′ as the new
second term in square brackets. Let Ξm := (ξm,l,l′)l,l′∈M\{m} and Ψm := (ψm,l,l′)l,l′∈M\{m}.

By construction, for all m ∈ M we then have Σ̂n,m = Σm + Πm + oP(1) and Ξ̂n,m =
Ξm+Ψm+oP(1), and Σm, Πm, Ξm, and Ψm are positive semi-definite with Πm∗ = Ψm∗ = 0.

Finally, I state two results that are needed below. In particular, Lemma A.1 establishes
the asymptotic distribution of J∗n,m̂ defined in step 1 of Procedure 3.1 with the random
index m̂ equal to a fixed index m ∈M; this statistic is denoted by J∗n,m.

Lemma A.1. Suppose we are in the situation of Theorem 3.3. For all m ∈ M, we have
J∗n,m  X in probability, where X ∼ χ2

M−1.

Lemma A.2. Suppose the conditions of Theorem 3.3 hold. If m∗ ∈M, then

plim
n→∞

sup
x∈R

∣∣∣P∗(MJ ∗n ≤ x)− P(MJ n ≤ x)
∣∣∣ = 0. (A.1)

B. Proofs

Proof of Lemma 2.5. Both parts can be established by routine arguments for Wald statis-
tics. The details are therefore omitted.

Proof of Theorem 2.7. (i) In view of Lemma 2.5, this can be shown by arguments similar to
those used to prove Theorem 1 of Berger (1982). (ii) Use Lemma 2.5(ii) and the continuity
of the minimum function.

Proof of Lemma 2.8. By Lemma 2.5, for every ε > 0 we can find B > 0 such that

lim sup
n→∞

P(m̂ 6= m∗) = lim sup
n→∞

P
(
∃m ∈M \ {m∗} : Jn,m < Jn,m∗

)
≤

∑
m∈M\{m∗}

lim
n→∞

P(Jn,m ≤ B) + sup
n∈N

P(Jn,m∗ > B) < ε,

which can be made arbitrarily small by choosing B large enough. To see the second part,
note that P(m̂ = m∗ | MJ n ≤ c1−α) = P(Jn,m∗ ≤ c1−α)/P(MJ n ≤ c1−α), which converges
to one by Lemma 2.5(i) and Theorem 2.7(i).
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Proof of Lemma A.1. I first show Σ̂
∗−1/2
n,m λ∗n,m  NM−1(0, IM−1) in probability. Since

Σ̂∗−1/2n,m λ∗n,m = Ξ̂−1/2n,m

(
n−1/2β̂>mX

>
mPlMmHû

)
l∈M\{m}

+ oP∗(1) in probability,

it suffices to argue that the first term on the right-hand side satisfies a Liapounov condition
in probability.

Let E∗(·) := E(· | y,F), Γ̂m,l := (X>mXm)−1X>mXl, and note that

n−1−δ
n∑
i=1

E∗
∣∣∣(β̂>mΓ̂>l,m

(
xi,l − Γ̂>m,lxi,m

)
ηiûi,m

)
l∈M\{m}

∣∣∣2+δ
≤
(2(M − 1)

n

)1+δ n∑
i=1

∑
l∈M\{m}

E∗
(∣∣β̂>mΓ̂>l,mxi,lηiûi,m

∣∣2+δ
+
∣∣β̂>mΓ̂>l,mΓ̂>m,lxi,mηiûi,m

∣∣2+δ)
≤
(2(M − 1)

n

)1+δ ∑
l∈M\{m}

(
(|β̂m|‖Γ̂l,m‖)2+δ E∗ |η|2+δ

n∑
i=1

|xi,lûi,m|2+δ

+ (|β̂m|‖Γ̂l,m‖‖Γ̂m,l‖)2+δ E∗ |η|2+δ
n∑
i=1

|xi,mûi,m|2+δ
)

= OP(n−δ),

where the first inequality uses the cr inequality and the second inequality applies the fact
that η is iid and submultiplicativity of the Frobenius norm. The equality follows from
another application of the cr inequality to the sums involving n such that

n∑
i=1

|xi,lûi,m|2+δ ≤ 31+δ

n∑
i=1

(
|xi,lui,m∗|2+δ + ‖xi,lx>i,m∗‖2+δ|βm∗|2+δ

+ ‖xi,lx>i,m‖2+δ|β̂m|2+δ
)

which is OP(n), and |β̂m|, ‖Γ̂l,m‖, and ‖Γ̂m,l‖ are OP(1). Pólya’s Theorem (Theorem 11.2.9

of Lehmann and Romano, 2005, p. 429) then implies Σ̂
∗−1/2
n,m λ∗n,m  NM−1(0, IM−1) in

probability and therefore J∗n,m  χ2
M−1 in probability by continuity.

Proof of Lemma A.2. Let m̂∗ := arg minJ ∗n . I first show that if m∗ ∈ M, then m̂∗ ap-
proximates m∗. Notice that for all m ∈ M \ {m̂}, we have P∗(Jn,m ≤ B) = 1(Jn,m ≤ B)
since Jn,m is constant with respect to P∗ and therefore

P∗(m̂∗ 6= m̂) ≤ 1
(
∃m ∈M \ {m̂} : Jn,m ≤ B

)
+ P∗(J∗n,m̂ > B). (B.1)

Without loss of generality, fix any 0 < ε < 1; then P
[
1
(
∃m ∈ M \ {m̂} : Jn,m ≤ B

)
>

ε
]
≤ P

(
∃m ∈ M \ {m∗} : Jn,m ≤ B

)
+ P(m̂ 6= m∗), which converges to zero as n→∞ by
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Lemmas 2.5(ii) and 2.8. Further, P[P∗(J∗n,m̂ > B) > ε] ≤ P(m̂ 6= m∗)+supn∈N P[P∗(J∗n,m∗ >
B) > ε]. Since the second term on the right-hand side can be shown to be small for large B
by arguments similar to those used to prove Prohorov’s Theorem (Theorem 2.4 of van der
Vaart, 1998, p. 8), conclude that (B.1) and therefore also P∗(m̂∗ 6= m̂) is oP(1); but then
P[P∗(m̂∗ 6= m∗) > ε] ≤ P[P∗(m̂∗ 6= m̂) > ε] + P(m̂ 6= m∗) = o(1) for all ε > 0. Since
P∗(J∗n,m∗ ≤ x) = P∗(J∗n,m̂∗ ≤ x) + P∗({J∗n,m∗ ≤ x} ∩ {m̂∗ 6= m∗}) for all x ∈ R, and
P∗({J∗n,m∗ ≤ x} ∩ {m̂∗ 6= m∗}) ≤ P∗(m̂∗ 6= m∗) = oP(1), we have plimn→∞ P∗(J∗n,m̂∗ ≤
x) = K(x), where K is the distribution function of a χ2

M−1 variable. Pólya’s Theorem then
implies MJ ∗n = J∗n,m̂∗  χ2

M−1 in probability. Finally, because the supremum in (A.1) is
bounded above by supx |P∗(MJ ∗n ≤ x) − K(x)| + supx |P(MJ n ≤ x) − K(x)|, the result
follows from Theorem 2.7(i).

Proof of Theorem 3.3. (i) Lemma A.2 combined with Lehmann and Romano’s (2005, p.
430) Lemma 11.2.1 implies plimn→∞ c

∗
n,1−α = K−1(1 − α), and therefore MJ n − c∗n,1−α  

X −K−1(1− α) by the Slutsky Lemma, where X ∼ χ2
M−1; but P[X −K−1(1− α) ≤ x] =

K[K−1(1− α) + x] is continuous in x and thus

|P(MJ n > c∗n,1−α)− α| ≤ sup
x∈R

∣∣∣P(MJ n − c∗n,1−α ≤ x)−K[K−1(1− α) + x]
∣∣∣

converges to zero by Pólya’s Theorem.
(ii) Suppose for now that the random index m̂ that selects the model that is bootstrapped

is equal to some fixed l ∈ M. Define J ∗n (l) := {J∗n,l} ∪ Jn \ {Jn,l} and notice that
J ∗n (m̂) = J ∗n . Lemma A.1 implies that J∗n,l  χ2

M−1 in probability. To deal with the other
elements of J ∗n (l), pick any m ∈ M \ {l} and note that for any 0 < ε < 1, we can find a
B > 0 such that K(B) > 1 − ε. Thus, P∗(Jn,m ≤ B) ≥ P∗[|1 − K(Jn,m)| > ε]. Because
P(Jn,m ≤ B) = oP∗(1) in probability by Lemma 2.5(ii), the asymptotic distribution of
K(Jn,m), m ∈M \ {l}, therefore converges to P∗-point mass at 1 in probability.

By an “in probability” version of Theorem 2.7(v) of van der Vaart (1998, p. 10), we can
now strengthen the marginal convergence of each element of J ∗n (l) to the joint convergence
of the vector Kl := (K(Jn,1), . . . , K(J∗n,l), . . . , K(Jn,M)) such that

plim
n→∞

P∗(Kl ≤ x) = P
[(

1, . . . , K(Xl), . . . , 1
)
≤ x

]
(B.2)

for each x ∈ RM at which the right-hand side is continuous, where Xl ∼ χ2
M−1. The

Continuous Mapping Theorem and Pólya’s Theorem in probability then yield minKl  
min(K(Xl), 1) ∼ Ul ∼ Uniform(0, 1) in probability.

There are M different ways of choosing the index l and therefore there are M different
bootstrap procedures that can be carried out. The bootstrapped variables of each of the
procedures, i.e., (J∗n,1, . . . , J

∗
n,M), are independent conditional on y and F , and therefore

the components of the vector (minK1, . . . ,minKM) are also conditionally independent.
By Lévy’s Continuity Theorem (Theorem 11.2.2 of Lehmann and Romano, 2005, p. 426)
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and Pólya’s Theorem in probability, the marginal convergence then implies the joint con-
vergence (minK1, . . . ,minKM)  (U1, . . . ,UM) in probability, where the Ul, l ∈ M, are
independent. Since K−1 is continuous and K is increasing, conclude that

MJ
∗
n := max

l∈M
minJ ∗n (l) = K−1

(
max
l∈M

minKl
)
 K−1

(
max
l∈M
Ul
)

in probability.

Notice that MJ ∗n = minJ ∗n (m̂) and thus P∗(MJ ∗n > B) ≤ P∗(MJ
∗
n > B). By an “in

probability” version of Prohorov’s Theorem, for any 0 < ε < 1 and δ > 0, we can then find
a B such that supn∈N P[P∗(MJ ∗n > B) > ε] ≤ supn∈N P[P∗(MJ

∗
n > B) > ε] < δ. Conclude

from Lemma 21.1(i) of van der Vaart (1998, p. 304) that P(c∗n,1−α > B) = P[P∗(MJ ∗n >
B) > α] < δ uniformly in n for any fixed α ∈ (0, 1). This result and Lemma 2.5(ii) imply
that for large enough n the right-hand side of the inequality P(MJ n ≤ c∗n,1−α) ≤ P(MJ n ≤
B) + P(c∗n,1−α > B) can be made as small as desired, which completes the proof.

Proof of Corollary 3.4. Identical to the proof of Lemma 2.8, mutatis mutandis.
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