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Abstract. I introduce a generic method for inference on entire quantile and

regression quantile processes in the presence of a finite number of large and arbitrarily

heterogeneous clusters. The method asymptotically controls size by generating

statistics that exhibit enough distributional symmetry such that randomization tests

can be applied. The randomization test does not require ex-ante matching of clusters,

is free of user-chosen parameters, and performs well at conventional significance

levels with as few as five clusters. The method tests standard (non-sharp) hypotheses

and can even be asymptotically similar in empirically relevant situations. The main

focus of the paper is inference on quantile treatment effects but the method applies

more broadly. Numerical and empirical examples are provided.
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1. Introduction

Economic data often contain large clusters such as countries, regions, villages,

or firms. Units within these clusters can be expected to influence one another

or are influenced by the same political, environmental, sociological, or technical

shocks. Several analytical and computer-intensive procedures such as the bootstrap

are available to account for the presence of data clusters. These procedures generally

achieve consistency by letting the number of clusters go to infinity. Numerical evidence
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by Bertrand, Duflo, and Mullainathan (2004), MacKinnon andWebb (2017), and others

in the context of mean regression suggests that this type of asymptotic approximation

often causes substantial size distortions when the number of clusters is small or the

clusters are heterogenous. True null hypotheses are rejected far too often in both

situations. Hagemann (2017) shows that this phenomenon is also present in quantile

regression.

In this paper, I develop a generic method for inference on the entire quantile or

regression quantile process in the presence of a finite number of large and arbitrarily

heterogeneous clusters. The method, which I refer to as cluster-randomized Kolmogorov-

Smirnov (CRK ) test, asymptotically controls size by generating Kolmogorov-Smirnov

statistics that exhibit enough distributional symmetry at the cluster level such that

randomization tests (Fisher, 1935; Canay, Romano, and Shaikh, 2017) can be applied.

The CRK test is not limited to the pure quantile regression setting and can be used

in distributional difference-in-differences estimation (Callaway and Li, 2019) and

related situations where quantile treatment effects are identified by between-cluster

comparisons. The CRK test is free of user-chosen parameters, powerful against fixed

and root-n local alternatives, and performs well at conventional significance levels with

as few as twelve clusters if parameters are identified between clusters. If parameters

are identified within clusters, then even five clusters are sufficient for inference.

Quantile regression (QR), introduced by Koenker and Bassett (1978), is an important

empirical tool because it can quantify the effect of a set of covariates on the entire

conditional outcome distribution. An issue with QR in the presence of clustering is

that estimates normalized by their asymptotic covariance kernel have standard normal

marginal limit distributions but are no longer pivotal for any choice of weight matrix

(Hagemann, 2017). Cluster-robust tests about the QR coefficient function therefore

have asymptotic distributions that cannot be tabulated for inference about ranges

of quantiles. Even if only individual quantiles are of interest, consistent covariance

matrix estimation in large clusters is challenging. It requires knowledge of an explicit
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ordering of the dependence structure within each cluster combined with a kernel and

bandwidth choice to give distant observations less weight. Because time has a natural

order, this weighting is easily done for time-dependent data but ordering data within

states or villages may be difficult or impossible. The common empirical strategy of

simply assuming that the clusters are small and numerous enough to satisfy a central

limit theorem circumvents these issues but can lead to substantial size distortions

with as few as 20 clusters (Hagemann, 2017). This remains true if a cluster-robust

version of the bootstrap is used. Distortions can be especially severe if clusters differ

greatly in their size and dependence structure.

I show that the CRK test is robust to each of these concerns: It performs well even

when the number of clusters is small, the dependence varies from cluster to cluster,

and the cluster sizes are heterogenous. The reason for this robustness is that the CRK

test does not rely on clustered covariance matrices to rescale the estimates. I instead

use randomization inference to generate random critical values that automatically

scale to the data. There are no kernels, bandwidths, or spatio-temporal orderings of

the data to choose. The test achieves consistency with a finite number of large but

heterogeneous clusters under interpretable high-level conditions. Despite being based

on randomization inference, the CRK test can perform standard (non-sharp) inference

on entire quantile or regression quantile processes. Randomization is performed with

a fixed set of estimates and does not require repeated estimation to obtain its critical

values.

The randomization method underlying the CRK test was first used in the cluster

context by Canay et al. (2017) as a way to perform inference on a finite-dimensional

parameter with Student t and Wald statistics in least squares regression. They do not

consider inference on quantile functions or Kolmogorov-Smirnov statistics. Here, I

considerably extend the scope of their method under explicit regularity conditions to

allow for inference on the entire QR process and related objects. The proofs below
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are fundamentally different from those of Canay et al. to account for the infinite-

dimensional setting and do not rely on the Skorokhod almost-sure representation

theorem. A practical issue with their method is that they require treated clusters to

be matched ex-ante with an equal number of control clusters. Each match corresponds

to a separate test and two researchers working with the same data can reach different

conclusions based on which matches they choose. If there is not an equal number of

treated and control clusters, then some clusters have to be combined or dropped in

an ad-hoc manner. The CRK test sidesteps these issues completely and explicitly

merges all potential tests into a single, uniquely determined test decision using results

of Rüschendorf (1982).

Cluster-robust inference in linear regression models has a long history; recent surveys

include Cameron and Miller (2015) and MacKinnon, Nielsen, and Webb (2022). Chen,

Wei, and Parzen (2003), Wang and He (2007), Wang (2009), Parente and Santos

Silva (2013), and Hagemann (2017) provide bootstrap and analytical methods for

cluster-robust inference in QR models. Yoon and Galvao (2020) discuss the situation

where clusters arise from correlation of individual units over time. All of these papers

require the number of clusters to go to infinity for consistency. The CRK test differs

from these papers because it is based on randomization inference and is consistent

with a finite number of clusters.

Several papers show that pointwise inference with a fixed number of clusters is

possible under a variety of conditions. Ibragimov and Müller (2010, 2016) use special

properties of the Student t statistic to perform inference on scale mixtures of normal

random variables. Bester, Conley, and Hansen (2011) use standard cluster-robust

covariance matrix estimators but adjust critical values under homogeneity assumptions

on the clusters. Canay, Santos, and Shaikh (2020) show that certain cluster-robust

versions of the wild bootstrap can be valid under strong homogeneity assumptions

with a fixed number of clusters. Hagemann (2019) adjusts permutation inference
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for arbitrary heterogeneity at the cluster level but his bounds only apply to finite-

dimensional objects. All of these methods can be used for inference at a single quantile

but are not designed for simultaneous inference across ranges of quantiles. In contrast,

the CRK test provides uniformly valid inference on the entire quantile process even if

clusters are arbitrarily heterogeneous.

The remainder of the paper is organized as follows: Section 2 establishes new results

on randomization inference on Gaussian processes. Section 3 uses these results to

show consistency of the CRK test and gives specific examples where the test applies,

including quantile difference-in-differences. Section 4 illustrates the finite sample

behavior of the test in Monte Carlo experiments and an empirical example using

Project STAR data. The appendix contains proofs.

I use the following notation and definitions: 1{·} is the indicator function, cardinality

of a set A is |A|, the smallest integer greater than or equal a is ⌈a⌉, and the largest

integer smaller than or equal a is ⌊a⌋. The minimum of a and b is denoted by a ∧ b.

Limits are as n → ∞ unless noted otherwise. Convergence in distribution under the

parameter δ is denoted by δ⇝ . A stochastic process {ξ(t) : t ∈ T } indexed by a set T

is a collection of random variables ξ(t) : Ω → R defined on the same probability space

(Ω,F , P ). Such a process is Gaussian if and only if (ξ(t1), . . . , ξ(tm)) is multivariate

normal for any finite collection of indices t1, . . . , tm ∈ T .

2. Randomization inference on Gaussian processes

In this section I study the size of randomization tests when the data come from

heterogeneous Gaussian processes. I then analyze asymptotic size when a limiting

experiment is characterized by such processes. The next section applies these generic

results to the quantile setting.

I first introduce some notation for randomization tests that I will use throughout

the paper. Let u 7→ Xj(u), 1 ⩽ j ⩽ q, be independent mean-zero Gaussian processes

indexed by u ∈ U , where U is a compact subset of (0, 1). Symmetry about zero implies
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that (Xj(u1), . . . , Xj(um)) and −(Xj(u1), . . . , Xj(um)) are identically distributed. Be-

cause this is true for every finite collection of indices u1, . . . , um ∈ U , u 7→ Xj(u) and

u 7→ −Xj(u) have the same (finite-dimensional) distributions. Define G = {1,−1}q as

the q-dimensional product of {1,−1} and, for g = (g1, . . . , gq) ∈ G, define g 7→ gx as

the direct product gx = (g1x1, . . . , gqxq) of g and x ∈ Rq. Independence and symmetry

together imply that u 7→ X(u) = (X1, . . . , Xq)(u) and u 7→ gX(u) have the same

distribution for every g ∈ G as long as X has mean zero. The quantile and quantile-like

processes discussed in the next section have this property under the null hypothesis.

Deviations from the null cause non-zero means and therefore also asymmetry in X.

The goal of this section is to develop a test of the null hypothesis of symmetry about

zero,

H0 : X(u) ∼ gX(u), all g ∈ G, all u ∈ U . (2.1)

To test this hypothesis, I use the Kolmogorov-Smirnov-type statistic

T (X) = sup
u∈U

1
q

q∑
j=1

Xj(u)
. (2.2)

This statistic is large if symmetry is violated because the mean of the Xj(u) is positive.

I focus on one-sided tests to the right for simplicity but this is not restrictive. To

test whether the mean is negative, simply use −X instead of X in the definition of T .

These test statistics can be combined for two-sided tests. I explain this in detail at

the end of Section 3.

Randomization inference uses distributional invariance to generate null distribu-

tions and critical values. In the present case, X is distributionally invariant to

all transformations g contained in G because X is symmetric. Let T (1)(X,G) ⩽

T (2)(X,G) ⩽ . . . ⩽ T (|G|)(X,G) be the |G| = 2q ordered values of T (gX) across g ∈ G

and let

T 1−α(X,G) := T (⌈(1−α)|G|⌉)(X,G) (2.3)
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be the 1− α quantile of these values. The randomization test function is then

ϕα(X,G) = 1{T (X) > T 1−α(X,G)}. (2.4)

If U is a finite set, distributional invariance underH0 immediately implies Eϕα(X,G) =

Eϕα(gX,G). By an argument due to Hoeffding (1952), the test function must satisfy

|G|α ⩾ ∑g∈G ϕα(gX,G) and, after taking expectations on both sides, equality of the

distributions yields |G|α ⩾ E∑g∈G ϕα(gX,G) = ∑
g∈G Eϕα(gX,G) = |G|Eϕα(X,G).

This implies Eϕα(X,G) ⩽ α, which makes T 1−α(X,G) an α-level critical value.

If U is a not finite, this argument does not immediately go through because (2.2)

is a statement about possibly uncountably many u ∈ U but I have only established

equivalence of the finite-dimensional distributions. However, as the following theorem

shows, the conclusion that the test controls size holds nonetheless. The proof of

the theorem extends Hoeffding’s proof to stochastic processes with smooth sample

paths by showing that (2.1) implies equality of the distributions of (T (gX))g∈G and

(T (gg̃X))g∈G for every g̃ ∈ G. I prove that this is enough for Hoeffding’s argument to

go through as long as at least one of the processes has positive variance at every u.

Theorem 2.1. Let {X1(u) : u ∈ U}, . . . , {Xq(u) : u ∈ U} be independent mean-

zero Gaussian processes with continuous sample paths indexed by the compact set

U ⊂ (0, 1) and let u 7→ X(u) := (X1, . . . , Xq)(u). If there is a j ∈ {1, . . . , q} such that

P (Xj(u) = 0) = 0 for all u ∈ U , then Eϕα(X,G) ⩽ α.

Remarks. (i) If desired, the test decision can be randomized to construct an exact

test. Take an independent variable V with a uniform distribution on [0, 1] and the

nonrandomized test function

φα(X,G) =



1 if T (X) > T 1−α(X,G),

a(X) if T (X) = T 1−α(X,G),

0 if T (X) < T 1−α(X,G),

(2.5)
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where

a(X) = |G|α− |{g ∈ G : T (gX) > T 1−α(X,G)|
|{g ∈ G : T (gX) = T 1−α(X,G)| .

Using arguments of Hoeffding (1952), I show in the proof of Theorem 2.1 that the

randomized test indeed satisfies P (φα(X,G) ⩾ V ) = α. However, this type of test

is uncommon in practice because rejecting the null if φα(X,G) ⩾ V bases the test

decision on a single draw from the uniform distribution. A researcher could therefore

draw until a desired conclusion was reached.

(ii) Similar arguments arise in the context of conformal prediction (Vovk, Gammer-

man, and Shafer, 2005) with exchangeable data. Such arguments do not apply here

because (T (gX))g∈G is generally not exchangeable. □

If X is only an approximation in the sense that Xn ⇝ X in ℓ∞(U)q, the space of

bounded maps from U to Rq, then the conclusions of the theorem still hold as long as

the non-degeneracy conditions are strengthened. Here and in the following I tacitly

assume that a process is indexed by a compact U ⊂ (0, 1) and that ℓ∞(U)q is equipped

with the Borel σ-field induced by the uniform norm topology.

Theorem 2.2. If Xn ⇝ X = {(X1, . . . , Xq)(u) : u ∈ U}, where the {Xj(u) : u ∈ U}

are independent mean-zero Gaussian processes with continuous sample paths that

satisfy P (Xj(u) = −Xj(u′)) = 0 for all u, u′ ∈ U and 1 ⩽ j ⩽ q, then Eϕα(Xn,G) →

Eϕα(X,G).

Remarks. (i) For the non-degeneracy assumption P (Xj(u) = −Xj(u′)) = 0 to fail,

a Gaussian process with uniformly continuous sample paths has to traverse, with

certainty, from Xj(u) to Xj(u′) = −Xj(u) while maintaining a positive variance along

the entire path. The process would have to have identical variances at time u and u′

but be perfectly negatively correlated at those times, which is impossible for Brownian

bridges and related processes that typically arise in a quantile context. Still, such

Gaussian processes exist and have to be ruled out.
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(ii) The main difficulty of the proof of Theorem 2.2 is that the critical value

T 1−α(Xn,G) does not settle down in the limit and is highly dependent on T (X). The

assumptions of Theorem 2.2 rule out degeneracies in the limit process that could

lead to ties in the order statistics of {T (gX) : g ∈ G}. This would put probability

mass on the boundary of the set {T (X) > T 1−α(X,G)} and prevent application of

the portmanteau lemma. Canay et al. (2017) use a delicate construction based on

Skorokhod’s representation theorem to account for the randomness in the limit. While

these results could be extended from vectors to processes, I instead give a direct proof

that I can also use to analyze the behavior of the test under both local and global

alternatives when I discuss quantile processes in the next section.

(iii) Similar but less involved arguments show that if the supremum in the test

statistic (2.4) is replaced by an integral over U , then Theorems 2.1 and 2.2 continue to

hold. However, this implicitly changes (2.1) to an hypothesis about the symmetry of∫
U X(u)du. Other forms of the test statistic can also lead to valid tests, although the

smoothness conditions described in parts (i) and (ii) of this remark may change. □

3. Inference on quantile processes with a finite number of clusters

This section gives high level conditions under which asymptotically valid inference

on quantile processes and related objects can be performed even if the underlying

data come from a fixed number of heterogeneous clusters.

3.1. Inference when parameters are identified within clusters. Suppose data

from q large clusters (e.g., counties, regions, schools, firms, or stretches of time) are

available. Throughout the paper, the number of clusters q remains fixed and does not

grow with the number of observations n. Observations are independent across clusters

but dependent within clusters. Data from each cluster 1 ⩽ j ⩽ q separately identify a

quantile or quantile-like scalar function δ : U → R. The δ can be estimated by δ̂j using

data from only cluster j such that a total of q separate estimates (δ̂1, . . . , δ̂q) =: δ̂ of

u 7→ δ(u) are available. The goal is to use randomization inference on a centered and
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scaled version of δ̂ to develop tests of the null hypothesis

H0 : δ(u) = δ0(u), all u ∈ U , (3.1)

for some known function δ0 : U → R. The following two examples describe simple but

empirically relevant situations that fit this framework.

Example 3.1 (Regression quantiles). Suppose an outcome Yi,j of individual

i in cluster j can be represented as Yi,j = Xi,jδ(Ui,j) + Z ′
i,jβj(Ui,j), where u 7→

Xi,jδ(u) + Z ′
i,jβj(u) is strictly increasing in u and Ui,j is standard uniform conditional

on covariates (Xi,j, Zi,j). Here Xi,j is the scalar covariate of interest and the Zi,j are

additional controls. Monotonicity implies that the u-th conditional quantile of Yi,j

is Xi,jδ(u) + Z ′
i,jβj(u) and linear QR as in Koenker and Bassett (1978) can provide

estimates (δ̂j, β̂j) of (δ, βj) for each cluster. Testing (3.1) with δ0 ≡ 0 tests whether

Yi,j and Xi,j are associated at any quantile after controlling for Zi,j.

Several related models fit the framework of this example: (i) The βj can be constant

across clusters. This does not impact the null hypothesis or the computation of the

δ̂j. (ii) The δ can vary by cluster in the QR model Yi,j = Xi,jδj(Ui,j) + Z ′
i,jβ(Ui,j)

under the alternative. This has no impact on the computation of the δj and the null

hypothesis simply becomes H0 : δ1 = · · · = δq = δ0. Identical δj are required only

under the null hypothesis. (iii) If βj ≡ 0 and Xi,j ≡ 1, then u 7→ δ̂(u) reduces to the

u-th unconditional empirical quantile of Yi,j. The null (3.1) can then be used to test

whether δ has a specific functional form, e.g., a standard normal quantile function. □

Example 3.2 (Quantile treatment effects). Consider predetermined pairs {(j, j +

q) : 1 ⩽ j ⩽ q} of 2q groups. Suppose the first q groups received treatment, indicated by

Dj = 1{j ⩽ q}, and the remaining groups did not. Groups here could be manufacturing

plants or villages. Treatment could be management consulting or introduction of a new

technology. Denote treatment and control potential outcomes by Yj(1) ∼ FY (1) and

Yj(0) ∼ FY (0), respectively. The observed outcome is Yj = DjYj(1) + (1−Dj)Yj(0).
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For each group j, the experimenter observes identically distributed but potentially

highly dependent copies Yi,j of Yj representing workers i within group j. View each

pair (j, j+ q) for 1 ⩽ j ⩽ q as a cluster and define the quantile treatment effect (QTE)

as

u 7→ δ(u) = F−1
Y (1)(u)− F−1

Y (0)(u).

This QTE can be estimated as difference of the empirical quantiles

u 7→ δ̂j(u) = F̂−1
Yj

(u)− F̂−1
Yj+q

(u)

or, alternatively, as the coefficient on Dj in a QR of Yi,j on a constant and Dj using

data only from cluster j. The situation where δ varies with j is again included in

the analysis as long as the null hypotheses is δ1 = · · · = δq = δ0. Estimation remains

unchanged. I discuss the more complex scenario where the counterfactual FY (0) has

to be identified through difference-in-differences methods in Example 3.6 ahead. □

The δ̂ is neither limited to the estimators discussed in the preceding two examples

nor does it need to have a special functional form. However, I assume that it can be

approximated by a Gaussian process as in Theorem 2.2. Let 1q be a q-vector of ones.

Assumption 3.3. The stochastic process {δ̂(u) : u ∈ U} with δ̂(u) ∈ Rq satisfies

Xn := {
√
n(δ̂ − δ1q)(u) : u ∈ U} δ⇝ X = {(X1, . . . , Xq)(u) : u ∈ U}, (3.2)

where the components of X are independent mean-zero Gaussian processes with con-

tinuous sample paths, P (Xj(u) = −Xj(u′)) = 0 for all u, u′ ∈ U and 1 ⩽ j ⩽ q.

Examples of Xn that can satisfy this assumption include unconditional quantile

functions, coefficient functions in quantile regressions, quantile treatment effects, and

other quantile-like objects. El Machkouri, Volný, and Wu (2013) present invariance

principles and moment bounds that can be used to establish the convergence condition

(3.2) under explicit weak dependence conditions.
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I now connect the results from Section 2 about heterogeneous Gaussian processes to

tests about δ under Assumption 3.3. The key property is that if H0 in (3.1) does not

hold, then
√
n(δ̂−δ01q) = Xn+

√
n(δ−δ0)1q. The Xn converges to a symmetric process

but
√
n(δ − δ0)(u) grows without bound for some u, which makes the distribution of

√
n(δ̂ − δ01q) highly asymmetric. Testing for symmetry using randomization inference

is therefore informative about the hypothesis that δ = δ0. I refer to a test that uses

δ̂ − δ01q in place of X in test function (2.4) as the cluster-randomized Kolmorogov-

Smirnov (CRK ) test. From a practical perspective, the function δ0 is almost always

δ0 ≡ 0. This tests the null of no effect at any quantile but more general hypotheses

can be considered.

The test function x 7→ ϕα(x,G) is invariant to scaling of x by positive constants. If

H0 : δ = δ0 is true, then the CRK test satisfies

T (δ̂ − δ01q) > T 1−α(δ̂ − δ01q,G)

if and only if T (Xn) > T 1−α(Xn,G). That the CRK test is an asymptotic α-level test

is then an immediate consequence of Theorems 2.1 and 2.2.

Theorem 3.4 (Size). Suppose Assumption 3.3 holds. If H0 : δ = δ0 is true, then

limn→∞ Eϕα(δ̂ − δ01q,G) ⩽ α.

Remarks. (i) The canonical limit of quantile and regression quantile processes such as

those in Examples 3.1 and 3.2 is a scaled version of a q-dimensional Brownian bridge.

That process easily satisfies the non-standard condition P (Xj(u) = −Xj(u′)) = 0

imposed by Assumption 3.3.

(ii) The inequality in the theorem becomes an equality if (1− α)2q is an integer. In

that case, the test in the limit experiment is “similar,” i.e., it has rejection probability

exactly equal to α for all Gaussian processes that satisfy Assumption 3.3. The CRK

test can therefore be asymptotically similar in some situations. If desired, the test

decision can be randomized to make the CRK test similar in the limit for all α. □
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To analyze the power of the CRK test, I consider fixed alternatives δ(u) = δ0(u)+λ(u)

with a positive function u 7→ λ(u), and local alternatives δ(u) = δ0(u) + λ(u)/
√
n

converging to the maintained null hypothesis H0 : δ = δ0. In the local case, δ0 is fixed

but δ now depends on n and the convergence (3.2) is under the sequence of functions

δ = δ0 + λ/
√
n. As the following results show, the CRK test has power against both

types of alternatives.

Theorem 3.5 (Global and local power). Suppose Assumption 3.3 holds and α ⩾

1/2q. If H1 : δ = δ0 + λ is true with λ : U → [0,∞) continuous and supu∈U λ(u) > 0,

then limn→∞ Eϕα(δ̂ − δ01q,G) = 1. If H1 : δ = δ0 + λ/
√
n is true with supu∈U λ(u) >

E supu∈U Xj(u), 1 ⩽ j ⩽ q, then

lim
n→∞

Eϕα(δ̂ − δ01q,G) ⩾
q∏

j=1

(
1− e−[supλ(u)−E supXj(u)]2/2 supEX2

j
(u)
)
> 0,

where the suprema in the exponent are over u ∈ U .

Remarks. (i) The lower bound used for the local power result comes from the Borell-

Tsirelson-Ibragimov-Sudakov (Borell-TIS) inequality (see, e.g., Adler and Taylor, 2007,

p. 50). For large q, the bound is relatively crude but for small q, the only crude part

is the assumption that δ is moderately large when compared to X. This is reflected

in the condition that supu∈U λ(u) > E supu∈U Xj(u) instead of supu∈U λ(u) > 0. The

bound can be made arbitrarily close to 1 by choosing supu∈U λ(u) large enough.

(ii) If (1 − α)|G| > |G| − 1, the power of the test is identically zero. In that case

T 1−α(X,G) = maxg∈G T (gX) and T (X) > T 1−α(X,G) becomes impossible because

T (X) is contained in {T (gX) : g ∈ G}. I therefore I focus on the case (1− α)|G| ⩽

|G| − 1, which is equivalent to α ⩾ 1/2q.

(iii) The test also has power against alternatives where λ varies with the cluster

index j and at least some of the λj are large. However, a precise statement without

additional conditions on the relative sizes of the λj is involved. I do not pursue this

here to prevent notational clutter. □



QUANTILE PROCESSES WITH A FINITE NUMBER OF CLUSTERS 14

3.2. Inference when parameters are identified across clusters. In applications,

the treatment effect is often not identified from within a cluster but by comparisons

across two clusters. This is the case, for example, if treatment is assigned at random

at the cluster level or if identification comes from comparing changes in one cluster

to changes in another cluster in a quasi-experimental context. In this situation, each

individual pairing of a treated cluster j with a control cluster k is generally informative

about the treatment effect of interest δ and each (j, k) pair gives rise to an estimate

δ̂j,k of δ that could be used in a CRK-type test. The following example illustrates this

for difference-in-differences estimation of quantile treatment effects.

Example 3.6 (Quantile difference in differences). Let ∆Yt(0) = Yt(0)− Yt−1(0)

be time differences of untreated outcomes. Periods t ∈ {0,−1} are pre-intervention

periods and t = 1 is the post-intervention period; Y1(1) is a treated potential outcome

and Yt are observed outcomes. Denote by FY |D=d the distribution of a variable Y

conditional on the treatment indicator taking on the value d ∈ {0, 1}. Callaway and

Li (2019) show that the distribution FY1(0)|D=1(y) of the untreated potential outcome

of a treated observation at time t = 1 can be identified as

P
(
F−1
∆Y1|D=0

(
F∆Y0|D=1(∆Y0)

)
+ F−1

Y0|D=0

(
FY−1|D=1(Y−1)

)
⩽ y | D = 1

)
(3.3)

as long as a distributional version of the standard parallel trends assumption and

some additional stability and smoothness conditions hold. This identifies the quantile

treatment on the treated (QTT) effect

u 7→ δ(u) = F−1
Y1(1)|D=1(u)− F−1

Y1(0)|D=1(u),

where F−1
Y1(1)|D=1(u) can be estimated by the sample quantile F̂−1

Y1|D=1(u). To estimate

the counterfactual quantile, Callaway and Li replace P and every F in (3.3) with

sample equivalents. This yields the estimated QTT

u 7→ F̂−1
Y1|D=1(u)− F̂−1

Y1(0)|D=1(u). (3.4)
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Callaway and Li show that
√
n(F̂−1

Y1|D=1 − F̂−1
Y1(0)|D=1 − δ) converges to a well-behaved

Gaussian process under mild regularity conditions.

Suppose that data come from q1 states that received treatment and q0 states that

did not. View a single state over time as a cluster. Then two clusters are enough to

compute (3.4): F̂−1
Y1|D=1 can be computed from a treated cluster j and F̂−1

Y1(0)|D=1 can

be computed from j and an untreated cluster k. Denote by δ̂j,k the QTT estimated in

this fashion using only data from clusters j and k. Each (j, k) pair provides a valid

estimate of δ and each δ̂j,k could potentially be used in a CRK-type test of the null

hypothesis H0 : δ = δ0. □

I again assume that centered and scaled δ̂j,k converge in distribution to non-

degenerate Gaussian processes with smooth sample paths as in Assumption 3.3.

I only adjust this condition for the fact that estimates are constructed from pairwise

combination of clusters. Let q1 be the number of treated clusters and let q0 be the

number of control clusters.

Assumption 3.7. The process {
√
n(δ̂j,k − δ)(u) : u ∈ U} converges, jointly in j and

k, in distribution to mean-zero Gaussian processes Xj,k with continuous sample paths

that satisfy P (Xj,k(u) = −Xj,k(u′)) = 0 for all u, u′ ∈ U , 1 ⩽ j ⩽ q1, and 1 ⩽ k ⩽ q0.

If both j ̸= j′ and k ̸= k′, then Xj,k and Xj′,k′ are independent.

A näıve test of H0 : δ ≡ δ0 would now take Xn,j,k :=
√
n(δ̂j,k − δ0) and generate

randomization distributions from {Xn,j,k : 1 ⩽ j ⩽ q1, 1 ⩽ k ⩽ q0} via sign changes.

However, Xn,j,k and Xn,j,k′ are dependent for any choice of j, k, k′ because j is used

twice. This remains true even in large samples and if the data from all q1 + q0

groups are independent. Dependence causes problems because (Xn,j,k, Xn,j,k′) and

(Xn,j,k,−Xn,j,k′) generally do not have the same joint distribution even when n → ∞.

Invariance under transformations with g therefore fails. This issue can be avoided if

one works with a subset of {Xn,j,k : 1 ⩽ j ⩽ q1, 1 ⩽ k ⩽ q0} that uses each j and k only

once. While this solves the dependence issue, it introduces another problem: each of
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the q1 treatment groups now has to be paired with exactly one of the q0 control groups.

Unless these pairings are determined before the data are analyzed, two researchers

working with the same data and methodology could arrive at different conclusions

because they chose different pairings. To address this problem, I now develop a method

that maintains invariance under sign changes but avoids any decisions on the part of

the researcher.

I first introduce some notation. If q1 ⩽ q0, there are q0× (q0− 1)×· · ·× (q0− q1+1)

ways of choosing q1 ordered elements out of (1, . . . , q0). Identify each such choice with

an h and denote the collection of all h by H. The ordering within H will not affect

the test decision. For each h ∈ H, denote by

δ̂[h] = (δ̂1,h(1), δ̂2,h(2), . . . , δ̂q1,h(q1)), q1 ⩽ q0, (3.5)

the vector that matches the subset of control groups associated with the label h =

(h(1), . . . , h(q1)) to the (unpermuted) treated groups. If there are more treated than

control groups such that q1 > q0, permute treated groups instead and take h as

enumerating ways of choosing q0 elements out of (1, . . . , q1) to define

δ̂[h] = (δ̂h(1),1, δ̂h(2),2, . . . , δ̂h(q0),q0), q1 > q0. (3.6)

By construction, the entries of δ̂[h] are independent of one another but δ̂[h] and δ̂[h′] for

h, h′ ∈ H are potentially highly dependent.

To address the issue that there are multiple ways of combining clusters, I use an

adjustment based on the randomization p-value

p(X,G) = inf{p ∈ (0, 1) : T (X) > T p(X,G)} = 1
|G|

∑
g∈G

1{T (gX) ⩾ T (X)}. (3.7)

Testing with this p-value is equivalent to a test with a critical value because T (X) >

T 1−α(X,G) if and only if p(X,G) ⩽ α. The multiple comparisons adjustment is based

on an inequality of Rüschendorf (1982). It states that arbitrary, possibly dependent

variables Uh indexed by h ∈ H with the property that P (Uh ⩽ u) ⩽ u for every
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u ∈ [0, 1] satisfy

P

 2
|H|

∑
h∈H

Uh ⩽ u

 ⩽ u, every u ∈ [0, 1]. (3.8)

This specific form of the inequality is given in Vovk and Wang (2020). Here the

indexing set H is arbitrary and does not need to be related to permutations. The only

condition is that H = |H| ⩾ 2. The randomization p-value p(δ̂[h] − δ01q1∧q0 ,G) for

testing whether the treatment effect of interest equals δ0 can be expected to behave

like the Uh in (3.8) in a large enough sample. Combining p-values of the CRK test to

reject the null if
2
H

∑
h∈H

p(δ̂[h] − δ01q1∧q0 ,G) (3.9)

does not exceed α should then asymptotically control size. The following theorem

confirms that this is indeed true.

Theorem 3.8 (Size with combined p-values). Suppose Assumption 3.7 holds. If

δ = δ0, then

lim sup
n→∞

P

 2
H

∑
h∈H

p(δ̂[h] − δ01q1∧q0 ,G) ⩽ α

 ⩽ α.

Remarks. (i) The theorem can be improved slightly if α|G|H/2 is not an inte-

ger. In that case, the limit superior in the theorem is a proper limit that equals

P ((2/H)∑h∈H p(X[h],G) ⩽ α), where X[h] is the weak limit of
√
n(δ̂[h] − δ01q1∧q0).

This is because the sum in the preceding display can vary discontinuously at certain

values. The limit inferior is P ((2/H)∑h∈H p(X[h],G) < α).

(ii) Results of Vovk and Wang (2020) suggest that other ways of combining p-values

such as exp(1) times the geometric mean of the p-value instead of a twice the average

p-value are likely to be applicable here as well. However, the proof of the theorem

given here relies crucially on the properties of the Rüschendorf inequality. In the

Monte Carlo experiments in the next section, I do not find evidence that other ways

of combining p-values lead to better results. □
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The price paid for not matching treated and control clusters before the analysis is

lower relative power. When p-values are averaged, Rüschendorf’s inequality essentially

decreases α to α/2 to control size. Meng (1993) shows that the constant 2 cannot

be improved. Still, as I establish below, the test has power against global and local

alternatives if α > 1/2q1∧q0−1, which is slightly stronger than what is needed in

Theorem 3.5. Compared to Theorem 3.5, I also do not state an explicit bound for the

local power analysis because applying the Borel-TIS inequality to the averaged p-values

directly yields only relatively crude results. I instead show that if the alternatives

λ/
√
n converging to the null hypothesis are scaled up by a constant c, the test can

detect these alternatives in the limit experiment with arbitrary accuracy if c is large

enough, that is, if first n → ∞ and then c → ∞.

Theorem 3.9 (Global and local power with combined p-values). Suppose

Assumption 3.7 holds and α > 1/2q1∧q0−1. If H1 : δ = δ0 + λ with λ : U → [0,∞)

continuous and supu∈U(u) > 0, then limn→∞ P ((2/H)∑h∈H p(δ̂[h]−δ01q1∧q0 ,G) ⩽ α) =

1. If H1 : δ = δ0 + cλ/
√
n, then

lim
c→∞

lim inf
n→∞

P

 2
H

∑
h∈H

p(δ̂[h] − δ01q1∧q0 ,G) ⩽ α

 = 1.

3.3. Implementation. I now turn to some practical aspects of the CRK test. I

discuss (i) what to do if G is large, (ii) what to do if H is large, and (iii) how to

implement the test with a step-by-step guide. First, G can be prohibitively large if the

number of clusters is large. If computing the entire randomization distribution is too

costly, then G can be approximated by a random sample Gm consisting of m draws

from G with replacement. This is often referred to as “stochastic approximation.” The

theorems presented in Sections 3.1 and 3.2 continue to hold if Gm is used in place of G

as long as a limit superior or inferior as m → ∞ is applied before n → ∞. The order of

limits is not restrictive because, in a given sample of size n, the number of draws can m

always be made as large as computationally feasible. Under stochastic approximation,
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the statement in Theorem 3.4 becomes limn→∞ lim supm→∞ Eϕα(δ̂ − δ01q,Gm) ⩽ α,

whereas statements about power use a limit inferior. Limit superior and inferior are

needed here because of potential discontinuities but can be replaced by regular limits

for most values of α. Theorems 3.4, 3.8, and 3.9 hold without additional conditions

but the conditions of Theorem 3.5 have to be strengthened marginally to avoid a

discontinuity at α = 1/2q.

Proposition 3.10. Suppose Gm consists of m iid draws from G. If every instance of

G is replaced by Gm, then

(i) Theorem 3.4 holds if limn→∞ is replaced by limn→∞ lim supm→∞,

(ii) Theorem 3.5 holds if every limn→∞ is replaced by limn→∞ lim infm→∞ and α >

1/2q,

(iii) Theorem 3.8 holds if lim supn→∞ is replaced by lim supn→∞ lim supm→∞,

(iv) Theorem 3.9 holds if limn→∞ is replaced by limn→∞ lim infm→∞ and lim infn→∞

is replaced by lim infn→∞ lim infm→∞.

If α ̸∈ {j/|G| : 1 ⩽ j ⩽ |G|}, then lim infm→∞ and lim supm→∞ can be replaced by

limm→∞ in (i)-(iv).

Second, the number of elements of H can similarly be large if the number of clusters

is large or if there is a large discrepancy between the number of treated and the

number of control clusters. In that case one can again work with a random subset I

of H. The crucial difference to the preceding result is that both Theorems 3.8 and 3.9

continue to hold even if I consists of only a finite number of random draws. In fact,

the result goes through for any I as long as I is independent of the data.

Proposition 3.11. Let I with |I| ⩾ 2 be a fixed or random subset of H independent

of the data. Then Theorems 3.8 and 3.9 continue to hold if H is replaced by I.

Finally, the following two algorithms outline and summarize how to apply the CRK

test in practice. By Theorems 3.4 and 3.8, the procedures provide an asymptotically
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α-level test in the presence of a finite number of large clusters that are arbitrarily

heterogeneous. They are free of nuisance parameters and do not require any decisions

on the part of the researcher. By Theorems 3.5 and 3.9, the tests are able to detect

fixed and 1/
√
n-local alternatives. The first algorithm describes the CRK test when

the parameters are identified within clusters. The second algorithm describes the

between-cluster case, which is needed for distributional difference in differences. The

tests can be two-sided or one-sided in either direction.

Algorithm 3.12 (CRK test for parameters identified within clusters).

(1) Compute for each j = 1, . . . , q and using only data from cluster j an estimate δ̂j
of a parameter of interest δ. (See Examples 3.1 and 3.2.) Define δ̂ = (δ̂1, . . . , δ̂q).

(2) Compute G, the set of all vectors of length q with entries 1 or −1, or replace

G with a large random sample Gm from G in the following.

(3) Reject the null hypothesis H0 : δ(u) = δ0(u) for all u (e.g., δ0 ≡ 0 tests for no

effect of treatment) against

(a) δ(u) > δ0(u) for some u if T (δ̂ − δ01q) > T 1−α(δ̂ − δ01q,G) for a test with

asymptotic level α,

(b) δ(u) < δ0(u) for some u if T (δ̂ − δ01q) < Tα(δ̂ − δ01q,G) for a test with

asymptotic level α,

(c) δ(u) ̸= δ0(u) for some u if (a) or (b) are true for a test with asymptotic

level 2α,

where T is defined in (2.2) and T 1−α(·,G) is the ⌈(1− α)|G|⌉-th largest value

of the randomization distribution of T , defined in (2.3).

Algorithm 3.13 (CRK test for parameters identified between clusters).

(1) Compute H, as defined above (3.5), or replace H with a large subset I in the

following.

(2) Compute G, the set of all vectors of length q with entries 1 or −1, or replace

G with a large random sample Gm from G in the following.
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(3) For each h, compute δ̂[h] from (3.5) if q1 ⩽ q0 or from (3.6) if q1 > q0. (See

Example 3.6.) Use (3.7) and (3.9) to compute

2
|H|

∑
h∈H

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α (3.10)

(4) Reject the null hypothesis H0 : δ(u) = δ0(u) for all u (e.g., δ0 ≡ 0 tests for no

effect of treatment) against

(a) δ(u) > δ0(u) for some u if (3.10) is true for a test with asymptotic level α,

(b) δ(u) < δ0(u) for some u if (3.10) is true when δ̂[h]− δ01min{q1,q0} is replaced

by −(δ̂[h] − δ01min{q1,q0}) for a test with asymptotic level α,

(c) δ(u) ̸= δ0(u) for some u if (a) or (b) are true for a test with asymptotic

level 2α.

In some contexts, Algorithm 3.12 can be used even if the parameter of interest is

identified by comparisons between treated and untreated clusters. For this to work,

the researcher has to merge each treated cluster with an untreated cluster into a single

cluster to recover within-cluster identification. If the number of treated clusters and

control clusters is equal, then every treated cluster can be matched with a control

cluster according to some rule. If the number of clusters is not equal, then two or

more clusters can be merged to force an equal number of treated and control clusters.

The merged clusters can then be reinterpreted as clusters and Algorithm 3.12 can be

applied to these new clusters. While this comes with a large number of decisions, it is

a valid method for inference if these decisions are made before the data are analyzed.

For example, when estimating quantile treatment effects, a pre-analysis plan can be

put in place that prescribes how clusters that received treatment will be merged with

clusters that did not receive treatment. This reduces the problem to the one described

in Example 3.2.

The next section investigates the finite sample performance of Algorithms 3.12 and

3.13 in several sitations.
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4. Numerical results

This section presents several Monte Carlo experiments to investigate the small-

sample properties of the CRK test in comparison to other methods of inference. I

discuss significance tests on quantile regression coefficient functions (Example 4.1),

inference in experiments when parameters are identified between clusters (Example 4.2),

and estimation of QTEs in Project STAR (Example 4.3). I test one-sided hypotheses

to the right but the results apply more broadly.

Example 4.1 (Regression quantiles, cont.). In this example, I adapt an experiment

of Hagemann (2017) and use the data generating process (DGP)

Yi,j,k = Ui,j,k + Ui,j,kZi,j,k,

where Ui,j,k = √
ϱVj,k +

√
1− ϱWi,j,k with ϱ ∈ [0, 1); Vj,k and Wi,j,k are standard

normal, independent of one another, and independent across indices. This ensures

that the Ui,j,k are standard normal and, for a given j, k, any pair Ui,j,k and Ui′,j,k

has correlation ϱ. The Zi,j,k satisfy Zi,j,k = X2
i,j,k/3 with Xi,j,k standard normal

independent of Ui,j,k to ensure that the Ui,j,kZi,j,k have mean zero and variance one.

Both Xi,j,k and Ui,j,k are independent across j and k, and Xi,j,k is also independent

across i. I discard information on k after data generation and drop the k subscripts in

the following because they are not assumed to be known. This induces a dependence

structure where each cluster j = 1, . . . , q consists of several (unknown) neighborhoods

k = 1, . . . , K where observations are dependent if they come from the same k but are

independent otherwise. If K → ∞ and the size of the neighborhoods is fixed or grows

slowly with K, then this dependence structure is compatible with Assumptions 3.3 and

3.7 because it generates the weak dependence needed for central limit theory. In the

experiments ahead, I set K to either 10 or 20 and draw the size of each neighborhood

from the uniform distribution on {5, 6, . . . , 15}. The DGP in the preceding display
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corresponds to the QR model

Q(u | Xi,j, Zi,j) = β0(u) + β1(u)Xi,j + β2(u)Zi,j (4.1)

with β1(u) ≡ 0 and β0(u) = Φ−1(u) = β2(u), where Φ is the standard normal

distribution function. For the CRK test, I estimated (4.1) separately for each cluster,

obtained q estimates of β1 and applied Algorithm 3.12 with 1,000 new draws from G

for each Monte Carlo replication.

To the best of my knowledge, there are no other methods of inference designed

specifically for quantile functions or Kolmogorov-Smirnov statistics in data with few

large clusters. I therefore compare the CRK test to inference with the wild gradient

bootstrap (Hagemann, 2017), a cluster-robust version of the bootstrap that requires the

number of clusters q → ∞ for consistency. The wild gradient bootstrap is the default

option for cluster-robust inference in the quantreg package in R. I use the package

default settings with Mammen bootstrap weights and 200 bootstrap simulations.

Alternative analytical methods for cluster-robust inference in quantile regressions exist

but can only perform pointwise inference because the QR process as q → ∞ generally

has an analytically intractable distribution. Hagemann (2017) shows that the wild

gradient bootstrap can conduct uniform inference on quantile regression functions and

that it outperforms other methods for pointwise inference in this context. However,

Hagemann (2017) notes that size distortions can occur when fewer than 20 clusters

are present. I therefore focus on this situation in the following.

Figure 1 shows the rejection frequencies of a true null hypothesis H0 : β1(u) = 0

for all u as a function of the number of clusters q ∈ {5, 6, . . . , 20} for the wild

gradient bootstrap (left) and the CRK test (right) at the 5% level (short-dashed

line). The figure shows rejection frequencies in 5,000 Monte Carlo replications for

each horizontal coordinate with (i) K = 10 neighborhoods per cluster with intra-

neighborhood correlation ϱ = .5 (solid lines), (ii) K = 20 with ϱ = .5 (long-dashed),

and (iii) K = 10 with ϱ = .1 (dotted). Both methods were faced with the same data
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Figure 1. Rejection frequencies in Example 4.1 of a true null H0 : β1(u) = 0 for all
u as a function of the number of clusters for the bootstrap (left) and the CRK test
(right) with (i)K = 10 neighborhoods per cluster with intra-neighborhood correlation
ϱ = .5 (solid lines), (ii) K = 20 with ϱ = .5 (long-dashed), and (iii) K = 10 with
ϱ = .1 (dotted). Short-dashed line equals nominal level .05.

and I estimated β1 at u = .1, .2, . . . , .9 for both methods. As can be seen, the wild

gradient bootstrap over-rejected mildly with 20 clusters but over-rejected substantially

for smaller numbers of clusters. It exceeded a 10% rejection rate if only 12 clusters

were available. With 5 clusters, the wild gradient bootstrap falsely discovered an effect

in up to 20.9% of all cases (K = 10, ϱ = .1). In contrast, the CRK test rejected at or

slightly below nominal level for all q and all configurations of K and ϱ.

I also experimented with a large number of alternative DGPs under the null. I

considered (not shown) larger neighborhoods, different values of ϱ, different spatial

dependence structures such as (spatial) autoregressive models, and different distribu-

tions for Xi,j,k. However, I found that these changes had little qualitative impact on

the results described in the preceding paragraph or in Hagemann (2017). The wild

gradient bootstrap generally performed very well but experienced size distortions with

fewer than 20 clusters. The CRK test rejected at or slightly below nominal level in all

situations I investigated.
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I now turn to the behavior of the test under the alternative. I repeated the experiment

but now tested the incorrect null hypothesis H0 : β2(u) = 0 for all u ∈ U . Figure 2

shows the rejection frequencies of this null against the alternative H1 : β2(u) > 0 for

some u ∈ U , where U was either (0, 1) (black) or (.5, 1) (grey). The null hypothesis

is false in both situations but the case where U = (0, 1) is more challenging because

β2(u) < 0 for all u < .5 so that estimates below the median provide evidence in the

direction away from the alternative. I again considered (i) K = 10 neighborhoods

per cluster with intra-neighborhood correlation ϱ = .5 (solid lines), (ii) K = 20 with

ϱ = .5 (long-dashed), and (iii) K = 10 with ϱ = .1 (dotted). As could be expected, the

bootstrap rejected a large fraction of null hypotheses mostly because it was unable to

control the size of the test. However, it had high power when the number of clusters

was above 20 and the size distortions disappeared (not shown). The CRK test had

high power while maintaining size control even when the number of clusters was below

20. For example, at q = 12 it detected a deviation from the null between 22.5%

(K = 10, ϱ = .5,U = (0, 1)) and 84.26% (K = 20, ϱ = .5,U = (.5, 1)) of all cases.

More generally, additional clusters, lower intra-cluster dependence, and additional

neighborhoods per cluster increased the power of the CRK test. □

Example 4.2 (Quantile treatment effects, cont.). For this experiment, I reuse

the setup of Example 4.1 but replace the variable Xi,j,k with a cluster-level treatment

indicator Dj that equals one if cluster j received treatment and equals zero otherwise.

I randomly assign q1 = ⌊q/2⌋ clusters to treatment and q0 = ⌈q/2⌉ to control. The

coefficient of interest is δ in

Q(u | Dj) = β0(u) + δ(u)Dj + β2(u)Zi,j.

I do not assume that pairings are predetermined and therefore use the adjusted p-values

of the CRK test from Algorithm 3.13. For each Monte Carlo replication, I drew a

collection I with |I| = 50 from H without replacement. The CRK test with unknown

cluster parings requires α = .05 > 1/2q1∧q0−1 to have power, which is satisfied here as
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Figure 2. Rejection frequencies in Example 4.1 of false nulls H0 : β2(u) = 0 for
u > .5 (grey) and H0 : β2(u) = 0 for all u (black) as a function of the number
of clusters for the bootstrap (left) and the CRK test (right) with (i) K = 10
neighborhoods per cluster with intra-neighborhood correlation ϱ = .5 (solid lines),
(ii) K = 20 with ϱ = .5 (long-dashed), and (iii) K = 10 with ϱ = .1 (dotted).

long as q ⩾ 12. I therefore restrict q to be between 12 and 20. All other parameters

of the experiment are exactly as in Example 4.1.

The left panel of Figure 3 shows the rejection frequencies of a true null hypothesis

H0 : δ(u) = 0 for all u in 5,000 Monte Carlo experiments per horizontal coordinate

as q increases. I again considered (i) K = 10 neighborhoods per cluster with intra-

neighborhood correlation ϱ = .5 (solid lines), (ii) K = 20 with ϱ = .5 (long-dashed),

and (iii) K = 10 with ϱ = .1 (dotted). As can be seen, adjusting the CRK test for

unknown cluster pairings results in a markedly more conservative test relative to

an unadjusted test from Figure 1. However, as the right panel of Figure 3 shows,

this did not translate into poor power under the alternative. When I repeated the

experiment with δ(u) ≡ .5, the CRK test with identification across clusters had no

problem detecting that neither H0 : δ(u) for all u ∈ (0, 1) (black) nor H0 : δ(u) for

u > .5 (grey) were true. Compared to Example 4.1, the alternative where U = (0, 1)

rejects slightly more nulls because now every u provides evidence against the null.
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Figure 3. Rejection frequencies in Example 4.2 of a true null (left) H0 : δ(u) = 0
for all u and false nulls (right) H0 : δ(u) = 0 for u > .5 (grey) and H0 : δ(u) = 0
for all u (black) as a function of the number of clusters for the CRK test when
cluster pairings are not known with (i) K = 10 neighborhoods per cluster with intra-
neighborhood correlation ϱ = .5 (solid lines), (ii) K = 20 with ϱ = .5 (long-dashed),
and (iii) K = 10 with ϱ = .1 (dotted).

A noteworthy feature of the right panel of Figure 3 is the “zig-zag” pattern in

the rejection frequencies. The reason for this pattern is the treatment assignment

mechanism. If q = 12, then q1 = 6 clusters receive treatment and q0 = 6 do not. If

q = 13, then again 6 = ⌊13/2⌋ clusters receive treatment but now 7 = ⌈13/2⌉ do

not. Algorithm 3.13 uses a large number of potential pairings of treatment to control

for inference but effectively reduces the number of clusters to min{q1, q0}. In this

experiment, inference with 6 + 7 clusters is therefore effectively the same as inference

with 6 + 6 clusters, which explains the similar performance of the test at q and q − 1

when q is odd.

I also experimented with alternative methods for combining the p-values in Algo-

rithm 3.13. For this, I repeated the experiment in the right panel of Figure 3 (not

shown) but replaced the left-hand side of (3.10) with either the standard Bonferroni

correction or the geometric average of the p-values times exp(1). The latter method
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is due to Mattner (2012) and discussed in detail in Vovk and Wang (2020). At

q = 12 with K = 20 and ϱ = .5, Bonferroni rejected the false null H0 : δ(u) = 0 for

all u in none of the 5,000 simulations, Mattner’s method rejected in 39.44% of all

simulations, and Algorithm 3.13 rejected in 60.76% of all simulations in the same

data. At q = 20, Mattner’s method and Algorithm 3.13 rejected in about 99% of all

cases. Bonferroni improved substantially and rejected in 96% of all cases. I conducted

a large number of additional experiments but the results remained the same. The

Bonferroni method had by far the lowest power. Relative to Algorithm 3.13, Mattner’s

method had significantly lower power when the number of clusters was small but both

alternatives caught up as this number increased. Neither Bonferroni nor Mattner’s

method improved the power of Algorithm 3.13 in any of my experiments.

Finally, I compare Algorithm 3.13 to the ideal situation where an equal number of

treated and control clusters are paired through a pilot experiment or pre-analysis plan.

For this, I repeated the experiment in Figure 3 with a single, randomly chosen pairing.

At q1 = q0 = 8, K = 10, and ϱ = .5, a test with pre-specified pairs rejected a false

H0 : δ(u) = 0 for all u in 82.16% of all cases as opposed to the 63.40% achieved by

Algorithm 3.13. In the same experiment with q1 = q0 = 10, the test with pre-specified

pairs rejected 91.90% of all false nulls and Algorithm 3.13 rejected 81.70% of all false

nulls. However, there are 8! = 40,320 potential ways of paring q1 = 8 treated clusters

and q0 = 8 control clusters. If q1 = q0 = 10, there are 3,628,800 ways. Each separate

set of pairs could be potentially selected for the test. If a researcher did not pre-specify

pairs and instead searched over potential pairs to discover a significant result, the

test would quickly lose size control. At q1 = q0 = 6, K = 10, and ϱ = .5, a correct

null hypothesis was erroneously rejected in 8.14% of all cases when the lowest p-value

among three potential pairings was used. If the researcher chooses the lowest p-value

among ten potential matches, then a non-existent effect showed up as statistically

significant in 13.96% of all cases in a test with 5% nominal level. Algorithm 3.13 does

not choose among these tests and completely avoids this loss of size control. □
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Example 4.3 (Placebo interventions in Project STAR). In this example, I

revisit a challenging placebo exercise of Hagemann (2017, Experiment 5.1) in data

from the first year of the Tennessee Student/Teacher Achievement Ratio experiment,

known as Project STAR. Details about the data can be found in Word et al. (1990)

and Graham (2008). I only provide a brief summary.

In 1985, incoming kindergarten students in 79 project schools were randomly

assigned to small classes (13-17 students) or regular-size classes (22-25 students) with

or without a teacher’s aide. Each of the project schools was required to have at least

one of each kindergarten class type. The outcome is standardized student performance

on the Stanford Achievement Test (SAT) in mathematics and reading administered at

the end of the school year. The raw test scores are standardized as in Krueger (1999).

He finds across several mean regression models that students in small classes perform

about five percentage points better on average than students in regular classrooms.

(Assigning teachers aides had no effect uniformly across specifications and I do not

consider such classes in the following.) Jackson and Page (2013) and Hagemann (2017)

document similar effects in quantile regressions but show that the effects are smaller

for students near the bottom and the very top of the conditional outcome distribution

and larger near the center of the distribution. For example, in the model

QYi,j(u | Xi,j) = β0(u) + δ(u)small i,j + β2(u)TZi,j (4.2)

where the treatment dummy small indicates whether the student was assigned to a

small class and Z contains school dummies, the effect of being in a small class relative

to a regular class varies between 2.78 percentage points at the 10th percentile to 7.23

percentage points at the 60th percentile. Jackson and Page (2013) hypothesize that

this heterogeneity could be attributed to varying levels of student motivation to take

advantage of increased individual attention from a teacher.

For the placebo experiment, I removed all small classes from the sample and only

kept the 16 schools that had two regular-size classes without aide. In each of these
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Table 1. Rejection frequencies of H0 : δ(u) = 0 for all u in placebo interventions in
Project STAR for the CRK test and the wild gradient bootstrap at 5% level

size power
δ = 0 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

CRK test .043 .122 .161 .212 .318 .379 .478
Bootstrap .091 .233 .316 .428 .580 .691 .814

16 schools, I then randomly assigned one of the regular-size classes the treatment

indicator small = 1. This mimics the random assignment of class sizes within schools

in the original sample, even though in this case no student actually attended a small

class. I clustered at the classroom level and applied the CRK test as in Algorithm 3.12

by running 16 separate quantile regressions, one for each school, on a constant and

small to get 16 separate estimates of δ. The fixed effects as in (4.2) are not needed

here because the constant can vary freely by school in these quantile regressions.

Algorithm 3.12 applies here because each school in this experiment has only one class

with small = 1 and one class with small = 0. (If multiple small classes per school were

available, then Algorithm 3.13 could be used instead.) For the wild gradient bootstrap,

I reran the QR in (4.2) in the placebo data and again clustered at the classroom

level. For both methods, I tested at the 5% level the correct null hypothesis that

H0 : δ(u) = 0 jointly at u ∈ {.1, .2, . . . , .9} against the alternative that δ is positive.

The rejection frequencies in ‘size’ column in Table 1 show the outcome of repeating

the placebo assignment 1,000 times. As can be seen, the CRK test provided a nearly

exact test but the bootstrap over-rejected somewhat. The over-rejection for the

bootstrap here was documented by Hagemann (2017) and can be attributed to the

very small number of clusters available in the placebo sample vis-à-vis the large number

of clusters needed for the consistency of the bootstrap.

I also investigated power by increasing the percentile scores of all students in

the randomly drawn small classes of the placebo experiment by δ ∈ {2, 3, 4, 5, 6, 7}

percentage points. These increases are of the same or smaller magnitude as the

estimated quantile treatment effects in the actual sample. Then I tested the incorrect
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hypothesis H0 : β1(u) = 0 for all u with the same experimental setup as before. The

results are shown in ‘power’ column of Table 1. As can be seen, the CRK test was

able to reliably detect effects for moderate deviations from the null hypothesis. The

wild gradient bootstrap rejected more often, but this was likely caused by its tendency

to over-reject in this data set. □

5. Conclusion

I introduce a generic method for inference on quantile and regression quantile

processes in the presence of a finite number of large and arbitrarily heterogeneous

clusters. The method asymptotically controls size by generating statistics that exhibit

enough distributional symmetry such that randomization tests can be applied. This

randomization test can even be asymptotically similar in empirically relevant situations.

The test does not require ex-ante matching of clusters, is free of user-chosen parameters,

and performs well at conventional significance levels with as few as five clusters. The

main focus on the paper is inference on quantile treatment effects and quantile

difference in differences but the method applies more broadly. Numerical examples

and an empirical application are provided.
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Appendix A. Proofs

Proof of Theorem 2.1. Denote the inverse element of g ∈ G by g−1 and the identity

element by id. The proof uses the inverse g−1 of g ∈ G to clarify its role in the

argument. However, note that inverting g is redundant for this particular G because it

satisfies g−1 = g. I first argue that (T (gX))g∈G satisfies (T (gX))g∈G ∼ (T (gg̃−1X))g∈G ,

where g̃ is an arbitrary element of G. For this, I show that both quantities must

have the same distribution at continuity points and that (T (gX))g∈G has a continuous

distribution. I then argue that (T (gX))g∈G ∼ (T (gg̃−1X))g∈G is enough for Hoeffding’s

(1952) argument to go through.

Take a finite grid of points Um := {i/m : i = 0, 1, . . . ,m} ∩ U . Then every u ∈ U

is a limit of a sequence in Um. Let x 7→ Tm(x) = supu∈Um

∑q
j=1 xj(u)/q. Uniform

continuity implies Tm(x) → T (x) and (Tm(gX))g∈G → (T (gX))g∈G almost surely and

therefore also (Tm(gX))g∈G ⇝ (T (gX))g∈G. Independence and P (Xj(u) = 0) = 0

ensure that ∑q
j=1Xj(u)/q has a continuous distribution at every u. Because X is

separable, T (gX) = supu∈U∩Q
∑q

j=1Xj(u)/q, where Q are the rationals. Conclude

that (T (gX))g∈G has a continuous distribution because for arbitrary tg ∈ R,

P
⋂
g∈G

{T (gX) = tg} ⩽ P

 sup
u∈U∩Q

1
q

q∑
j=1

Xj(u) = tid

 ⩽ ⋃
u∈U∩Q

P

1
q

q∑
j=1

Xj(u) = tid


and the extreme right-hand side equals zero. Finite-dimensional distributional in-

variance implies that (Tm(gX))g∈G and (Tm(gg̃−1X))g∈G have the same distribution

for every g̃ ∈ G. Because (Tm(gX))g∈G ⇝ (T (gX))g∈G, it must also be true that

(Tm(gg̃−1X))g∈G ⇝ (T (gX))g∈G and (Tm(gg̃−1X))g∈G ⇝ (T (gg̃−1X))g∈G. Conclude

from continuity that (T (gX))g∈G and (T (gg̃−1X))g∈G have the same distribution for
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every g̃ ∈ G. These two random vectors are of the form

(T (X), . . . , T (gX), . . . , T (g̃X), . . . ) ∼ (T (g̃−1X), . . . , T (gg̃−1X), . . . , T (idX), . . . ).

Because T 1−α(X,Gg̃−1) = T 1−α(X,G) = T 1−α(g̃X,G), this implies ϕα(X,G) ∼

ϕα(g̃X,G), where ϕα(g̃X,G) is the test function ϕα(X,G) computed with g̃X in-

stead of X. Because g̃ ∈ G was arbitrary, conclude E∑g∈G ϕα(gX,G) = Eϕα(X,G)|G|.

The same argument as the finite-dimensional case now yields Eϕα(X,G) ⩽ α.

For the randomized test decision introduced in (2.5), the arguments so far also

imply that φα(X,G) ∼ φα(gX,G) for every g ∈ G. Use the definition on a(X) to see

that ∑g∈G φα(gX,G) = |{g ∈ G : T (gX) > T 1−α(X,G)| + a(X)|{g ∈ G : T (gX) =

T 1−α(X,G)| = α|G| and therefore

P (φα(X,G) ⩾ V ) = Eφα(X,G) = 1
|G|

∑
g∈G

Eφα(gX,G) = 1
|G|

E
∑
g∈G

φα(gX,G) = α,

as desired. □

Proof of Theorem 2.2. For x, x′ ∈ ℓ∞(U)q and every g ∈ G, sub-additivity and mono-

tonicity give

T (gx)− T (gx′) ⩽ sup
u∈U

1
q

 q∑
j=1

gj
(
xj(u)− x′

j(u)
) ⩽ sup

u∈U

1
q

q∑
j=1

∣∣∣xj(u)− x′
j(u)

∣∣∣.
The far right of the display is at most |x− x′|U/

√
q. Reverse the roles of x and x′ to

conclude |T (gx)− T (gx′)|2 ⩽ |x− x′|2U/q for every g ∈ G and therefore
∣∣∣(T (gx)− T (gx′)

)
g∈G

∣∣∣ ⩽ √2q/q|x− x′|U .

Let |x − x′|U → 0 to deduce that x 7→ (T (gx))g∈G a continuous map from ℓ∞(U)q

to R|G| with respect to the sup-norm. Because Xn ⇝ X, the continuous mapping

theorem implies (T (gXn))g∈G ⇝ (T (gX))g∈G.
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Order G so that the identity action g = (1, . . . , 1) is the first element. Define

Bα =
{
(t1, t2, . . . , t|G|) : |{2 ⩽ i ⩽ |G| : ti < t1}| ⩾ ⌈(1− α)|G|⌉

}
(A.1)

as the set of all vectors where the first element of the vector exceeds at least ⌈(1−α)|G|⌉

of the remaining elements. Because only the relative ranking of (T (gX))g∈G enters

the test decision, the test rejects if and only if (T (gX))g∈G ∈ Bα. Conclude that

P (T (X) > Tα(X,G)) = P ((T (gX))g∈G ∈ Bα). The boundary ∂Bα of Bα can be

expressed as

∂Bα =
⋃
j⩾1

{
(t1, t2, . . . , t|G|) : |t1 = ti| = j, |{2 ⩽ i ⩽ |G| : ti < t1}| = ⌈(1− α)|G|⌉ − j

}

and therefore ∂Bα ⊂ ⋃
j⩾1{(t1, t2, . . . , t|G|) : |t1 = ti| = j}. By the portmanteau lemma,

P ((T (gXn))g∈G ∈ Bα) → P ((T (gX))g∈G ∈ Bα) as long ∂Bα satisfies P ((T (gX))g∈G ∈

∂Bα) = 0. The goal is therefore to show that

P

(
(T (gX))g∈G ∈

⋃
j⩾1

{(t1, t2, . . . , t|G|) : |t1 = ti| = j}
)
= 0,

i.e., (T (gX))g∈G has no ties with probability one.

The main difficulty here is that each component of (T (gX))g∈G is dependent, so the

preceding display does not follow from smoothness of the marginals of (T (gX))g∈G.

Instead, for u, u′ ∈ U and g ̸= g′, write
q∑

j=1
gjXj(u)−

q∑
j=1

g′jXj(u′) = (g,−g′)T (X(u), X(u′))

Because X is a Gaussian process, it follows that (X(u), X(u′)) is a jointly Gaussian

vector and therefore (g,−g′)T (X(u), X(u′)) is a normally distributed random variable.

If u = u′ or u ̸= u′ but X(u) = X(u′), then g ≠ g′ guarantees that ∑q
j=1 gjXj(u)−∑q

j=1 g
′
jXj(u) =

∑q
j=1(gj − g′j)Xj(u) has non-zero variance. Hence, suppose u ̸= u′

and X(u) ̸= X(u′). Let c(u, u′) = EX(u)X(u′) be the covariance function and

note that (g,−g′)T (X(u), X(u′)) is zero with positive probability if and only if
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(g,−g′)T c(u, u′)(g,−g′) = 0. Because the elements of X are independent, the co-

variance function satisfies

(g,−g′)T c(u, u′)(g,−g′) =
n∑

j=1
cjj(u, u) +

n∑
j=1

cjj(u′, u′)− 2
n∑

j=1
gjg

′
jcjj(u, u′).

Apply the Cauchy-Schwarz inequality to the right-hand side to deduce

0 = (g,−g′)T c(u, u′)(g,−g′) ⩾
n∑

j=1

(
cjj(u, u)− cjj(u′, u′)

)2
,

which implies VarXj(u) = VarXj(u′) for 1 ⩽ j ⩽ q. It follows that

0 =
n∑

j=1

(
cjj(u, u)− gjg

′
jcjj(u, u′)

)
Apply the Cauchy-Schwarz inequality again to see that every covariance must be non-

zero because cjj(u, u) > 0 and either cjj(u, u′) = cjj(u, u) or cjj(u, u′) = −cjj(u, u).

This implies that either Xj(u) = Xj(u′) or Xj(u) = −Xj(u′). Because g ̸= g′,

X(u) = X(u′) is impossible and at least one j must satisfy Xj(u) = −Xj(u′), which

is ruled out by assumption. Conclude
q∑

j=1
gjXj(u) ̸=

q∑
j=1

g′jXj(u′)

almost surely for all u, u′ ∈ U and all g ̸= g′. Because U is compact and X has

continuous sample paths, this ensures

T (gX)− T (g′X) = max
u∈U

q∑
j=1

gjXj(u)−max
u∈U

q∑
j=1

g′jXj(u) ̸= 0

for almost every sample path unless g = g′. □

Proof of Theorem 3.4. If H0 is true, then scale invariance implies ϕα(δ̂ − δ01q,G) =

ϕα(Xn,G). Assumption 3.3 and Theorem 2.2 yield Eϕα(δ̂ − δ01q,G) → Eϕα(X,G).

Eϕα(X,G) ⩽ α holds because X satisfies the conditions of Theorem 2.1. □
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Proof of Theorem 3.5. Suppose δ = δ0 + λ/
√
n so that Xn + λ1q δ⇝ X + λ1q. As

in the proof of Theorem 3.4, joint continuity of the map x 7→ (T (gx))g∈G implies

(T (g(Xn + λ1q)))g∈G δ⇝ (T (g(X + λ1q)))g∈G. With Bα as defined in (A.1), I only

have to show that P ((T (g(X + λ)))g∈G ∈ ∂Bα) = 0 to conclude P (T (Xn + λ) >

Tα(Xn + λ,G)) → P (T (X + λ) > Tα(X + λ,G)).

The boundary has probability zero if (T (g(X + λ)))g∈G has no ties. For u, u′ ∈ U

and g ̸= g′, write q∑
j=1

gjXj(u)−
q∑

j=1
g′jXj(u′)

+ λ(u)
q∑

j=1
gj − λ(u′)

q∑
j=1

g′j,

to see from the proof of Theorem 3.4 that the term in square brackets is nonzero

almost surely for all u, u′ ∈ U and all g ̸= g′. Because the expression in square brackets

is normally distributed with mean zero, it cannot take on any fixed nonzero value with

positive probability. The remainder of the preceding display is constant. Conclude

that the preceding display is nonzero almost surely for all u, u′ ∈ U and all g ̸= g′. As

in the proof of Theorem 3.4, this implies T (g(X + λ)) ̸= T (g′(X + λ)) almost surely

unless g ̸= g′.

I will now develop a lower bound on P (T (X + λ1q) > Tα(X + λ1q,G)). Because

the original statistic cannot exceed the largest order statistic, monotonicity implies

P
(
T (X + λ1q) > T 1−α(X + λ1q,G)

)
⩾ P

(
T (X + λ1q) > T (|G|−1)(X + λ1q,G)

)
= P

(
T (X + λ1q) = max

g∈G
T
(
g(X + λ1q)

))
and the right-hand side is at most

P

({
T (X + λ1q) = max

g∈G
T
(
g(X + λ1q)

)}
,

q⋂
j=1

{
inf
u∈U

(Xj(u) + λ(u)) ⩾ 0
})

.

If infu∈U(Xj(u) + λ(u)) ⩾ 0 for 1 ⩽ j ⩽ q, then T (X + λ1q) = maxg∈G T (g(X + λ1q))

because T cannot be increased by making large negative values positive through

multiplication by −1. By independence and symmetry of the Gaussian processes,
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conclude that the preceding display equals
q∏

j=1
P
(
inf
u∈U

(
Xj(u) + λ(u)

)
⩾ 0

)
=

q∏
j=1

P
(
sup
u∈U

(
Xj(u)− λ(u)

)
⩽ 0

)
.

Because sup(f − f ′) ⩾ sup f − sup f ′ for arbitrary f, f ′, this cannot exceed
q∏

j=1
P
(
sup
u∈U

Xj(u) ⩽ sup
u∈U

λ(u)
)
⩾

q∏
j=1

(
1− e−[supu λ(u)−E supu Xj(u)]2/2 supu EX2

j
(u)
)

by the Borell-TIS inequality as long as supu λ(u) > E supuXj(u). In that case, the

right-hand side of the preceding display is strictly positive, as required.

Suppose δ = δ0 + λ1q. We have δ̂ − δ0 = Xn/
√
n+ λ1q with Xn/

√
n⇝ 0, and by

arguments as in the proof of Theorem 3.3, the continuous mapping theorem yields

(T (g(δ̂ − δ01q)))g∈G ⇝ (T (gλ))g∈G. Monotonicity implies

Eϕ1−α(δ̂ − δ01q,G) ⩾ P
(
T (δ̂ − δ01q) > T (|G|−1)(δ̂ − δ01q,G)

)
As before, use a set of the form

B =
{
(t1, t2, . . . , t|G|) : |{2 ⩽ i ⩽ |G| : ti < t1}| ⩾ |G| − 1

}
to write P (T (λ) > T (|G|−1)(λ,G)) = P ((T (gλ))g∈G ∈ B) = 1{(T (gλ))g∈G ∈ B}. The

boundary ∂B is contained in the set

⋃
j⩾1

{
(t1, t2, . . . , t|G|) : |t1 = ti| = j

}
.

Because T (gλ) = supu∈U λ(u)∑q
j=q gj/q with λ ⩾ 0 and supu∈U λ(u) > 0, we have

T (λ) > T (gλ) for all g ̸= id := (1, . . . , 1). Hence, there are no ties with the first

element of (T (gλ))g∈G and 1{(T (gλ))g∈G ∈ ∂B} = 0. Conclude from the portmanteau

lemma that T (δ̂− δ01q)− T (|G|−1)(δ̂− δ01q,G)⇝ supu∈U λ(u)− supu∈U λ(u)∑q
j=q gj/q

for some g ̸= id. Because this limit is strictly positive,

Eϕ1−α(δ̂ − δ0,G) ⩾ P
(
T (δ̂ − δ0) > T (|G|−1)(δ̂ − θ0,G)

)
→ 1,
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as required. □

Proof of Theorem 3.8. I can work with Xn,[h] =
√
n(δ̂[h] − δ01min{q1,q0}) instead of

δ̂[h] − δ01min{q1,q0} because x 7→ p(x,G) is scale invariant. In the following I make

repeated use of the fact that the map x 7→ (x[h])h∈H, the map x[h] 7→ (T (gx[h]))g∈G,

and their composition are continuous.

Suppose q1 ⩽ q0. The case q1 > q0 requires only notational changes. The

components of Xn,[h] are of the form
√
n(δ̂j,h(j) − δ0) =

√
n(δ̂j,h(j) − δ) under the

null hypothesis. By Assumption 3.7, these components converge in distribution to

X[h] := (X1,h(1), . . . , Xq1,h(q1)) jointly in h. The same arguments as in the proof of Theo-

rem 3.4 imply that T (gXn,[h]) converges in distribution, jointly in h and g, to T (gX[h]).

For the same reasons as in the proof of Theorem 3.4, for a given h, (T (gX[h]))g∈G\id
has no ties T (X[h]) with probability 1, provided Assumption 3.7 holds.

Consider

|G|
∑
h∈H

p(Xn,[h],G) =
∑
h∈H

∑
g∈G

1{T (gXn,[h]) ⩾ T (Xn,[h])}.

This function jumps discretely if, for some h and g, T (gXn,[h]) = T (Xn,[h]). The

continuous mapping theorem applies to this function if the probability of hitting

these jumps is zero, i.e., P (T (gXn,[h]) = T (Xn,[h]) for some g ∈ G, h ∈ H) = 0. The

union bound implies that this probability cannot exceed ∑h∈H
∑

g∈G P (T (gXn,[h]) =

T (Xn,[h])) = 0 because (T (gX[h]))g∈G has no ties almost surely. Conclude that the

preceding display converges in distribution to ∑h∈H
∑

g∈G 1{T (gX[h]) ⩾ T (X[h])} and

therefore

P

 2
H

∑
h∈H

p(Xn,[h],G) ⩽ α

→ P

 2
H

∑
h∈H

p(X[h],G) ⩽ α


if α is a continuity point of the right-hand side. Because |G|∑h∈H p(X[h],G) is integer-

valued, non-integer values of αH|G|/2 are continuity points.
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For integer αH|G|/2, find an ε > 0 such that (α+ ε)H|G|/2 is not an integer but

α + ε ⩽ 1. Monotonicity and weak convergence imply

lim sup
n→∞

P

 2
H

∑
h∈H

p(Xn,[h],G) ⩽ α

 ⩽ P

 2
H

∑
h∈H

p(X[h],G) ⩽ α + ε

.
By the Rüschendorf (1982) inequality, the right-hand side cannot exceed α + ε. Now

let ε ↘ 0 to obtain the desired result. □

Proof of Theorem 3.9. As in the proof of Theorem 3.8, letXn,[h] =
√
n(δ̂[h]−δ01min{q1,q0})

and q1 ⩽ q0 without loss of generality. Consider fixed alternatives δ = δ0 + λ. The

components of δ̂[h] − δ01q1 are of the form

δ̂j,h(j) − δ0 =
√
n(δ̂j,k − δ)/

√
n+ λ⇝ λ

by uniform continuity. Deduce that for every g and h, T (Xn,[h]/
√
n)− T (gXn,[h]/

√
n)

converges in probability to T (λ[h])− T (gλ[h]). For g ̸= id, this limit equals

sup
u∈U

λ(u)− sup
u∈U

λ(u)
q∑

j=q

gj/q > 0.

Zero is therefore a continuity point of the (degenerate) limiting distribution of

T (Xn,[h]/
√
n)− T (gXn,[h]/

√
n), which implies

P
(
T (gXn,[h]/

√
n) ⩾ T (Xn,[h]/

√
n)
)
→ 0

and 1{T (gXn,[h]/
√
n) ⩾ T (Xn,[h]/

√
n)} → 0 for every g ̸= id and h. Conclude that

1
H

∑
h∈H

p(Xn,[h],G) =
1

|G|H
∑
h∈H

∑
g∈G

1{T (gXn,[h]) ⩾ T (Xn,[h])}⇝
1
|G|

and therefore

P

 2
H

∑
h∈H

p(δ̂[h] − δ01q1 ,G) ⩽ α

→ 1{2 ⩽ α|G|}

as long as α|G| ≠ 2 to guarantee that convergence occurs at a continuity point.
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Now consider local alternatives u 7→ δ(u) = δ0(u) + cλ(u)/
√
n with c constant. As

in the proof of Theorem 3.4, continuity of the maps x 7→ x[h] and x[h] 7→ (T (gx[h]))g∈G
implies (T (g(Xn,[h] + cλ1q1)))g∈G ⇝ (T (g(X[h] + cλ1q1)))g∈G jointly in h ∈ H. For a

given h, (T (g(X[h]+cλ1q1)))g∈G again has no ties with probability 1. As before, deduce

P

 2
H

∑
h∈H

p(Xn,[h] + cλ1q1 ,G) ⩽ α

→ P

 2
H

∑
h∈H

p(X[h] + cλ1q1 ,G) ⩽ α


if α is a continuity point of the right-hand side. Because |G|∑h∈H p(X[h] + cλ1q1 ,G)

is integer-valued, non-integer values of αH|G|/2 are continuity points. For integer

αH|G|/2, find an ε > 0 such that (α− ε)H|G|/2 is not an integer but α− ε > 0.

lim inf
n→∞

P

 2
H

∑
h∈H

p(Xn,[h] + cλ1q1 ,G) ⩽ α

 ⩾ P

 2
H

∑
h∈H

p(X[h] + cλ1q1 ,G) ⩽ α− ε


by monotonicity. Let ε ↘ 0 to see that the limit inferior is bounded below by

P

 2
H

∑
h∈H

p(X[h] + cλ1q1) < α

.
The same bound holds trivially for non-integer αH|G|/2.

For the analysis as c → ∞, consider

2
H

∑
h∈H

p(X[h] + cλ1q1) =
2

|G|H
∑
h∈H

∑
g∈G

1

T (g(X[h] + cλ1q1))
T (cλ1q1)

⩾
T (X[h] + cλ1q1)

T (cλ1q1)

.
For g = id, the indicator function in the preceding display equals q. Consider

g ̸= id. Because T (cλ1q1) = cT (λ1q1) > 0 and T (gX[h])/T (cλ1q1) → 0 almost

surely for every g ∈ G as c → ∞, it follows from the subadditivity of suprema

that T (g(X[h] + cλ1q1))/T (cλ1q1) → T (gλ1q1)/T (λ1q1) almost surely and therefore

(T (X[h] + cλ1q1) − T (g(X[h] + cλ1q1)))/T (cλ1q1) → 1 − (T (gλ1q1)/T (λ1q1)) almost

surely. That last limit is a strictly positive constant for every g ̸= id and there is one

id for every h. Conclude from the continuous mapping theorem that the preceding
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display converges almost surely to 2/|G| as c → ∞. If α|G| ≠ 2, it follows that

lim
c→∞

P

 2
H

∑
h∈H

p(X[h] + cλ1q) < α

 = 1{2 < α|G|},

as required. □

Proof of Proposition 3.11. If I is fixed, then the proof of Theorems 3.8 and 3.9 goes

through without any changes. For random I, work conditional on I to see that

Theorem 3.8 implies

lim sup
n→∞

P

 2
|I|

∑
h∈I

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α | I

 ⩽ α

almost surely. Apply expectations to conclude from the (reverse) Fatou lemma that

lim sup
n→∞

P

 2
|I|

∑
h∈I

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α


⩽ E lim sup

n→∞
P

 2
|I|

∑
h∈I

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α | I

 ⩽ α

as needed. Similarly, Fatou’s lemma implies

lim inf
n→∞

P

 2
|I|

∑
h∈I

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α


⩾ E lim inf

n→∞
P

 2
|I|

∑
h∈I

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α | I

.
Now apply the first part of Theorem 3.9 for a given I to get the result for fixed

alternatives. For local alternatives, the proof of Theorem 3.9 implies

lim inf
n→∞

P

 2
|I|

∑
h∈I

p(δ̂[h] − δ01min{q1,q0},G) ⩽ α | I


⩾ P

 2
|I|

∑
h∈I

p(X[h] + cλ1q1) < α | I

→ 1

almost surely as c → ∞, as required. □
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Proof of Proposition 3.10. Limits are as m → ∞ unless noted otherwise. Consider a

process Xn possibly depending on n and recall that T (Xn) > T 1−α(Xn,Gm) if and only

if p̂m := p(Xn,Gm) ⩽ α. Let p := p(Xn,G) and notice that E(p̂ | Xn) = p. For almost

every realization of Xn, p̂m is an average of bounded iid random variables that satisfies

P (|p̂m − p| > ε | Xn) → 0 almost surely for every ε > 0. Conclude from dominated

convergence that this convergence also holds unconditionally and therefore p̂m ⇝ p.

Because p can only vary at the points j/|G|, 1 ⩽ j ⩽ |G|, P (p̂m ⩽ α) → P (p ⩽ α) as

long as α ̸= j/|G|. If α equals j/|G| for some j, use 0 < ε < 1/|G| and monotonicity

to see that P (p̂m ⩽ α− ε) ⩽ P (p̂m ⩽ α) ⩽ P (p̂m ⩽ α + ε) must satisfy

P (p ⩽ α− ε) ⩽ lim inf
m→∞

P (p̂m ⩽ α) ⩽ lim sup
m→∞

P (p̂m ⩽ α) ⩽ P (p ⩽ α + ε).

Let ε ↘ 0 to see that the extreme right-hand side can be decreased to P (p ⩽ α).

For Theorem 3.4, apply this result to obtain

lim sup
m→∞

P
(
T (Xn) > T 1−α(Xn,Gm)

)
⩽ P

(
p(Xn,G) ⩽ α

)
= Eϕα(Xn,G).

Now apply limits as n → ∞.

For Theorem 3.8, consider stochastic processes Xn,h indexed by h and n. The con-

tinuous mapping theorem implies 2∑h∈H p(Xn,h,Gm)/H P→ 2∑h∈H p(Xn,h,G)/H and

therefore 2∑h∈H p(Xn,h,Gm)/H ⇝ 2∑h∈H p(Xn,h,G)/H. Using the same argument

as before gives

lim sup
m→∞

P

 2
H

∑
h∈H

p(Xn,h,Gm) ⩽ α

 ⩽ P

 2
H

∑
h∈H

p(Xn,h,G) ⩽ α


For Theorem 3.5, if α > 1/2q, there is a ε > 0 such that α− ε > 1/2q. Then

lim inf
m→∞

P
(
T (Xn) > T 1−α(Xn,Gm)

)
⩾ P

(
p(Xn,G) ⩽ α− ε

)
= Eϕα−ε(Xn,G)

and Theorem 3.5 applies directly to the extreme right-hand side.
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For Theorem 3.9, there is a ε > 0 such that α− ε > 1/2q−1. Then

lim inf
m→∞

P

 2
H

∑
h∈H

p(Xn,h,Gm) ⩽ α

 ⩾ P

 2
H

∑
h∈H

p(Xn,h,G) ⩽ α− ε


and Theorem 3.9 can be applied to the extreme right-hand side. □
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