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Abstract. I introduce a generic method for inference about a scalar parameter
in research designs with a finite number of heterogeneous clusters where only a
single cluster received treatment. This situation is commonplace in difference-in-
differences estimation but the test developed here applies more broadly. I show
that the test controls size and has power under asymptotics where the number
of observations within each cluster is large but the number of clusters is fixed.
The test combines weighted, approximately Gaussian parameter estimates with
a rearrangement procedure to obtain its critical values. The weights needed for
most empirically relevant situations are tabulated in the paper. Calculation of
the critical values is computationally simple and does not require simulation
or resampling. The rearrangement test is highly robust to situations where
some clusters are much more variable than others. Examples and an empirical
application are provided.
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1. Introduction

Studies with difference-in-differences estimation that arguably compare a single
treated group to multiple control groups are routinely published in prominent jour-
nals. Between 2017 and 2021, this study design came up repeatedly in the American
Economic Review, Journal of Political Economy, Quarterly Journal of Economics,
and Review of Economic Studies: Dustmann, Schönberg, and Stuhler (2017) compare
the German-Czech border region to distant German regions; Cunningham and Shah
(2018) compare Rhode Island to other US states; Johnston and Mas (2018) compare
Missouri to other US states; Cengiz, Dube, Lindner, and Zipperer (2019) compare
Washington state to other US states; Deryugina and Molitor (2020) compare New
Orleans to similar cities; Cameron, Seager, and Shah (2020) compare East Java to
similar districts; Giorcelli and Moser (2020) compare Lombardy-Venetia to other
early 19th century regions in present-day Italy; Cooper, Scott Morton, and Shekita
(2020) compare New York state to other US states; Mastrobuoni (2020) compares
Milan to other Italian cities; and Rubin and Rubin (2021) compare articles published
in the discontinued Journal of Business to articles in other top finance journals.
Statistical inference in this context is challenging and the results of some studies
have been questioned specifically because they only have a single treated group. For
instance, Ham and Ueda (2021) argue that the influential work of Garthwaite, Gross,
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and Notowidigdo (2014) does not properly account for having only Tennessee as the
treated unit. Kaestner (2016, 2021) criticizes several studies of the Massachusetts
health care reform and Deryugina and Molitor (2020) for the same reason.

Inference with one treated and multiple control groups is challenging in this
context because groups are large economic units such as states, villages, or other
geographic regions. Observations within each of these groups likely depend on one
another in unobservable ways and therefore require the researcher to cluster at the
group level. With one treated cluster, currently available inferential procedures
assume identically distributed clusters or other undesirable homogeneity conditions
that are unlikely to hold in empirical practice. In an attempt to avoid statistical
issues stemming from having a single treated cluster, researchers therefore routinely
resort to splitting large groups into smaller clusters that are presumed to be in-
dependent. However, numerical evidence by Bertrand, Duflo, and Mullainathan
(2004), MacKinnon and Webb (2017), and others suggests that ignoring dependence
or heterogeneity may lead to heavily distorted inference. In both cases, the actual
size of the test can exceed its nominal level by several orders of magnitude, i.e.,
nonexistent effects are far too likely to show up as highly significant. Part of the
underlying problem is that most available inference procedures achieve consistency
by requiring the number of clusters to go to infinity, which is difficult to justify
when the clusters are states or regions.

In this paper, I introduce an asymptotically valid method for inference with a
single treated cluster that allows for heterogeneity of unknown form. The number
of observations within each cluster is presumed to be large but the total number
of clusters is fixed. The method, which I refer to as a rearrangement test, applies
to standard difference-in-differences estimation and other settings where treatment
occurs in a single cluster and the treatment effect is identified by between-cluster
comparisons. The key theoretical insight for the rearrangement test is that a mild
restriction on some but not all of the heterogeneity in two samples of independent
normal variables allows testing the equality of their means even if one sample consists
of only a single observation. I prove that this is possible for empirically relevant
levels of significance if the other sample consists of at least twenty observations. The
test is feasible with even fewer observations if other restrictions are strengthened.
The rearrangement test compares the data to a reordered version of itself after
attaching a special weight to the sample with a single observation. The weights
needed for most standard situations are tabulated in the paper and calculating
additional weights is computationally simple. I also show that the weights remain
approximately valid if the two samples of independent heterogeneous normal variables
arise as a distributional limit. I exploit this result in the context of cluster-robust
inference by constructing asymptotically normal cluster-level statistics to which
the rearrangement test can be applied. The resulting test is consistent against all
fixed alternatives to the null, powerful against 1/

√
n local alternatives, and does

not require simulation or resampling. R and Stata commands that implement the
test are available at https://hgmn.github.io/rea.

Inference based on cluster-level estimates goes back at least to Fama and MacBeth
(1973). Their approach is generalized and formally justified by Ibragimov and
Müller (2010, 2016), who construct t statistics from cluster-level estimates and
show that these statistics can be compared to Student t critical values. Canay,
Romano, and Shaikh (2017) obtain null distributions by permuting the signs of

https://hgmn.github.io/rea


INFERENCE WITH A SINGLE TREATED CLUSTER 3

cluster-level statistics under symmetry assumptions. Hagemann (2022) permutes
cluster-level statistics directly but adjusts inference to control for the potential
lack of exchangeability. All of these methods allow for a fixed number of large
and heterogeneous clusters but require several treated clusters. At conventional
significance levels, Canay et al. (2017) and Hagemann (2022) require at least four
treated clusters. Ibragimov and Müller’s (2016) approach remains valid with as few
as two treated clusters. The rearrangement test complements these methods because
it relies on the same type of high-level condition on the cluster-level statistics but is
explicitly designed for a single treated cluster and does not readily extend to multiple
treated clusters. Other methods that are valid with a fixed number of clusters
are the tests of Bester, Conley, and Hansen (2011) and a cluster-robust version
of the wild bootstrap (see, e.g, Cameron, Gelbach, and Miller, 2008; Djogbenou,
MacKinnon, and Nielsen, 2019) analyzed by Canay, Santos, and Shaikh (2020).
However, these papers rely on strong homogeneity conditions across clusters that
are not needed here.

Several approaches for inference have been developed specifically for difference-in-
differences estimation. Conley and Taber (2011) provide a method that is valid with a
single treated cluster and infinitely many control clusters under strong independence
and homogeneity conditions that justify an exchangeability argument. Ferman and
Pinto (2019) extend this approach to estimators based on comparisons of means where
the form of heteroskedasticity is known exactly. Another extension by Ferman (2020)
allows for spatial correlation while maintaining Conley and Taber’s exchangeability
condition. The rearrangement test differs from these methods because it does not
require infinitely many control clusters, does not rely on exchangeability conditions,
and allows for completely unknown forms of heterogeneity. Other approaches due to
MacKinnon and Webb (2019, 2020) use randomization (permutation) inference for
difference-in-differences estimation and other models with few treated clusters. They
test “sharp” (Fisher, 1935) nulls under randomization hypotheses and asymptotics
where the number of clusters is eventually infinite. In contrast, the present paper is
able to test conventional nulls in a setting with finitely many clusters.

The remainder of the paper is organized as follows: Section 2 proves several new
results on normal random vectors with independent, heterogeneous entries after a
specific transformation and introduces the rearrangement test. Section 3 establishes
the asymptotic validity of the test in the presence of finitely many heterogeneous
clusters when only one cluster received treatment and discusses several examples.
Section 4 illustrates the finite sample behavior of the new test in simulations and
in data used by Garthwaite et al. (2014), who analyze the effects of a large-scale
disruption of public health insurance in Tennessee. Section 5 concludes. The
appendix contains auxiliary results and proofs.

I will use the following notation. 1{A} is an indicator function that equals one if
A is true and equals zero otherwise. Limits are as n → ∞ unless noted otherwise
and ⇝ denotes convergence in distribution.

2. Inference with heterogenous normal variables

In this section, I construct a test for the equality of means of two samples of
independent heterogeneous normal variables where one sample consists of only a
single observation. The other sample has finitely many observations. I use this
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framework in the next section to analyze the situation where the “observations” are
cluster-level summary statistics and only one cluster received treatment.

Consider q independent variables X0,1, . . . , X0,q with X0,k ∼ N(µ0, σ
2
k) for 1 ⩽

k ⩽ q. Independently, there is an additional variable X1 ∼ N(µ1, σ
2). I interpret

this as a two-sample problem with “control” sample X0,1, . . . , X0,q and “treatment”
sample X1, although all of the following still applies if these roles are reversed. The
objective is to test the null hypothesis of equality of means,

H0 : µ1 = µ0,

without knowledge of µ0, σ, σ1, . . . , σq and without assuming that these quantities
can be consistently estimated. I account for the uncertainty about µ0 by recentering
the data X = (X1, X0,1, . . . , X0,q) with X̄0 = q−1∑q

k=1 X0,k to define

S(X,w) =
(
(1 + w)(X1 − X̄0), (1 − w)(X1 − X̄0), X0,1 − X̄0, . . . , X0,q − X̄0

)
(2.1)

for some known weight w ∈ (0, 1) that will be chosen shortly. If X1 − X̄0 > 0, then
w increases (1 + w)(X1 − X̄0) and decreases (1 − w)(X1 − X̄0). If X1 − X̄0 < 0,
these effects are reversed. The idea underlying the test is that if the decreased
version of X1 − X̄0 is still large in comparison to X0,1 − X̄0, . . . , X0,q − X̄0, then
this size difference is unlikely to be only due to heterogeneity in σ2, σ2

1 , . . . , σ
2
q but

provides evidence for the alternative H1 : µ1 > µ0. I show below that w gives precise
probabilistic control over this comparison. In particular, choosing w appropriately
allows me to construct a test whose size can be bounded at a predetermined
significance level.

Before defining the test statistic, I first introduce some notation. For a given
vector s ∈ Rd, let s(1) ⩽ · · · ⩽ s(d) be the ordered entries of s. Denote by
s 7→ s▽ = (s(d), . . . , s(1)) the operation of rearranging the components of s from
largest to smallest. The test uses S(X,w) and its rearranged version S(X,w)▽ in
the difference-of-means statistic

s = (s1, . . . , sq+2) 7→ T (s) = s1 + s2
2 − 1

q

q∑
k=1

sk+2 (2.2)

to define the test function
ϕ(X,w) = 1

{
T
(
S(X,w)

)
= T

(
S(X,w)▽

)}
. (2.3)

The test, which I refer to as rearrangement test, rejects if ϕ(X,w) = 1 and does not
reject otherwise. As stated, the test is against the alternative of a positive treatment
effect, H1 : µ1 > µ0. For a test against H1 : µ1 < µ0, simply use ϕ(−X,w). These
alternatives can be combined to provide a two-sided test. I describe the exact
implementation below equation (2.7) ahead. Also note that the first difference of
means in (2.3) simplifies to T (S(X,w)) = X1 − X̄0 but T (S(X,w)▽) is in general a
complicated function of w.

Intuitively, the rearrangement test can be interpreted as a permutation test that
treats S = S(X,w) as if it were the data and uses the second largest permutation
statistic of T (S) as critical value c. If T (S) > c, then the only possibility left is
that T (S) equals its largest permutation statistic. For the difference of means T (S),
that statistic must be T (S▽) and therefore T (S) > c is equivalent to ϕ(X,w) = 1.
Because S is being permuted and not X, this also explains why it is sensible to
write T (S(X,w)) instead of X1 − X̄0 in the definition of the test function (2.3).
A classical permutation test would then use an exchangeability condition on S
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to determine the size of the test. Even though the S constructed here is far
from exchangeable, I will show that this test has power while controlling size at a
predetermined level. Instead of relying on exchangeability, the results here depend
on the joint normality of X combined with the location and scale invariance property
ϕ(X,w) = ϕ((X−µ01q+1)/σ,w), where 1q+1 is a (q+1)-vector of ones. The location
invariance is forced by the recentering of X with X̄0 and effectively removes µ0
from the list of nuisance quantities. The scale invariance is ensured by the specific
choices of T and ϕ. It reduces the dimensionless unknowns σ, σ1, . . . , σq to the more
tractable ratios σ1/σ, . . . , σq/σ. While I only discuss results for T and S because of
these convenient properties, it should be noted that other statistics and weighting
schemes may also lead to valid tests.

I start with the analysis of size and power, and connect these results with the
situation where X = (X1, X0,1, . . . , X0,q) is an asymptotic approximation later on.
I assume that the variances σ2

k of the X0,k, 1 ⩽ k ⩽ q, are bounded away from zero
by some σ

¯
2 > 0 for all but one X0,k with possibly zero variance. The reason for this

restriction is that if two (or more) X0,k had zero variance, this could be seen in the
data because the X0,k have the same mean and two (or more) X0,k would therefore
be identical. In contrast, a single zero variance cannot be detected. I also restrict
the variance σ2 of X1 to be bounded above by some σ̄2 < ∞ because letting σ → ∞
in ϕ(X,w) would have the same effect as setting all σ2

k equal to zero. Under the null
hypothesis, the distribution of ϕ(X,w) is then determined by the unknown value of
λ ∈ Λ := {(µ0, σ, σ1, . . . , σq) ∈ R×(0,∞)q+1 : σ ⩽ σ̄ and σk ⩾ σ

¯
for all k but one}.

Under the alternative, the distribution of ϕ(X,w) also depends on the treatment
effect δ = µ1 − µ0. I write Eλ,δ and Pλ,δ to emphasize this dependence but
occasionally drop subscripts to prevent clutter.

My strategy is to first bound the null rejection probability Eλ,0ϕ(X,w) uniformly
in λ ∈ Λ by a smooth function of the weight w. I can then find a w to make
the bound exactly equal to the desired significance level to guarantee size control.
The bound is also a function of the number of control observations q and the
maximal relative heterogeneity ϱ = σ̄/σ

¯
of treated and untreated observations. The

parameter ϱ is user chosen and has a simple interpretation: it restricts how much
more variable X1 can be relative to the X0,k in the extreme case when one of the
σk equals zero and the remaining σk are all equal to the lower limit σ

¯
. This is the

worst-case scenario for the test because X1 is then likely to be very large on accident
in comparison to the X0,k. In that scenario, a ϱ of 5 simply means that the variance
of X1 can be up to 52 = 25 times larger than the variances of all but one of the X0,k
and “infinitely more variable” than the remaining X0,k. Even at ϱ = 1 or below, the
rearrangement test therefore presumes that some heterogeneity is present because
there are no restrictions on how much less variable X1 can be than X0,1, . . . , X0,q.
I discuss how to impose homogeneity in Example 3.4 in the next section.

The following theorem is the main theoretical result of the paper. It establishes
the existence of a size bound that is valid for a fixed number of control observations
q and fully accounts for the uncertainty about the parameters in Λ. The theorem
also shows that the test has power against the alternative H1 : µ1 > µ0. Results
in the other direction follow by considering Eλ,−δϕ(−X,w) instead of Eλ,δϕ(X,w).
The discussion immediately below focuses on the implications of the theorem. I
address some of its technical aspects towards the end of this section. Let Φ and φ
denote the normal distribution and density functions, respectively.
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Figure 1. Solid lines show the size bound ξq(w, ϱ) at q = 20 control ob-
servations as a function of the weight w for different values of the maximal
heterogeneity ϱ. The dashed line equals .05.

Theorem 2.1 (Size and power). Let X1, X0,1, . . . , X0,q be independent with X1 ∼
N(µ0 + δ, σ2) and X0,k ∼ N(µ0, σ

2
k) for 1 ⩽ k ⩽ q. If δ = 0, then for all w ∈ (0, 1),

sup
λ∈Λ

Eλ,0ϕ(X,w) ⩽ ξq(w, ϱ) := 1
2q+1 +

∫ ∞

0
Φ
(
(1 − w)ϱy

)q−1
φ(y)dy (2.4)

+ min
t>0

(
Φ
(√

q − 1wt
)q−1

+ 2Φ(−qt)
)
.

Furthermore, for every λ ∈ Λ and w ∈ (0, 1), we have limδ→∞ Eλ,δϕ(X,w) = 1 and
limδ→∞ Eλ,δϕ(X, 1) = 0.

The theorem implies that the rearrangement test controls size, i.e.,

sup
λ∈Λ

Eλ,0ϕ(X,w) ⩽ α,

whenever q, w, and ϱ are such that ξq(w, ϱ) ⩽ α for the desired significance level α.
The bound ξq(w, ϱ) has several properties that make this possible. In particular, it is
monotonically increasing in ϱ and decreasing in q. The reason for the monotonicity
is that if X1 can be more variable than X0,1, . . . , X0,q, then the burden of proof to
show “µ1 > µ0” as opposed to “µ1 = µ0 with a large realization of X1” becomes
necessarily higher. A large q can ameliorate this effect somewhat because it removes
uncertainty about µ0. The bound also tends to be decreasing in w ∈ [0, 1] because
the integral generally dominates the other components, but can increase slightly in
some situations. This is illustrated in Figure 1, where w 7→ ξq(w, ϱ) (solid lines) is
essentially decreasing over the entire domain except for ϱ = 2 and w ⩾ .85. Most
importantly, it can be seen that w 7→ ξq(w, ϱ) decreases enough to dip below the
desired significance level α = .05 (dashed line) for all values of ϱ. As q increases (not
shown), w 7→ ξq(w, ϱ) is pushed towards zero but the shape of the function does not
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change meaningfully with q. The w at which ξq(w, ϱ) = α is generally unique for
most empirically relevant α and does not exist in some extreme situations. This
can be seen in Figure 1, where w 7→ ξq(w, ϱ) crosses α = .05 only once for each ϱ
but, for example, ξq(w, ϱ) = .6 is never attained. I return to the latter point at the
end of this section, where I discuss (2.4) in more detail.

Because a w that satisfies ξq(w, ϱ) = α is not necessarily unique and because
Theorem 2.1 suggests that power against the alternative H1 : µ1 > µ0 for w near
one can be low, it is sensible to choose the smallest feasible w, denoted by

wq(α, ϱ) = inf
{
w ∈ (0, 1) : ξq(w, ϱ) = α

}
, (2.5)

in the definition of the rearrangement test function for a test of size α,
x 7→ ϕα(x) := ϕ

(
x,wq(α, ϱ)

)
. (2.6)

The test ϕα also depends on ϱ but this is suppressed here to prevent clutter. Table 1
lists values of wq(α, ϱ) for common choices of α as a function of ϱ and q. They
guarantee

sup
λ∈Λ

Eλ,0ϕα(X) ⩽ α. (2.7)

The list is not exhaustive and additional values can be easily calculated by numerical
integration. No simulation or optimization over Λ is needed. Software that performs
the calculations can be found at https://hgmn.github.io/rea.

Table 1 shows that the rearrangement test is available in a wide variety of
situations depending on the desired significance level and tolerance for heterogeneity.
For instance, a test with a 10% significance level is already available with q = 10
control observations. A 5% level test becomes available at q = 15, a 1% level test
at q = 20, and for q ⩾ 25 there are essentially no restrictions to the level and
underlying heterogeneity. This provides two avenues for implementation:

(1) Choose a desired maximal degree of heterogeneity ϱ and make test decisions
based on this choice.

(2) Determine at which degree of maximal heterogeneity the null hypothesis
can no longer be rejected.

The second option explicitly accounts for the fact that ϱ cannot be estimated without
additional restrictions on the data and leaves it up to the reader to decide whether
the results are convincing. Implementing the test in this way has a meaningful
interpretation because a result that is robust to a tenfold larger standard deviation
in the treated observation relative to the control sample is more credible than a
result that only survives a twofold difference in standard deviation. I implement
this strategy as sensitivity analysis in the empirical application in Example 4.2.

The test decision itself is simple. Determine w = wq(α, ϱ) for a given number of
control observations q, desired significance level α, and tolerance for heterogeneity
ϱ. For this w, compute S = S(X,w) as in (2.1) and reorder the entries of S from
largest to smallest to obtain S▽. For an α-level test of µ1 = µ0, reject in favor
of µ1 > µ0 if T (S) = T (S▽) as defined in (2.2). For a one-sided test with level α
against µ1 < µ0, reject if T (−S) = T ((−S)▽). For a two-sided test with level 2α,
reject in favor of µ1 ̸= µ0 if either

T (S) = T (S▽) or T (−S) = T ((−S)▽). (2.8)
If desired, increase ϱ until the null hypothesis can no longer be rejected against the
alternative of interest. The test decision is monotonic in ϱ, i.e., if ϱ′ > ϱ lead to the
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Table 1. Weights wq(α, ϱ) as defined in (2.5) that guarantee size control at α
for a given maximal degree of heterogeneity ϱ = σ̄/σ

¯
for different values of q.

q
α σ̄/σ

¯
10 15 20 25 30 35 40 45 49

.10 2 .6333 .4010 .3294 .2829 .2475 .2188 .1948 .1742 .1562
3 .6098 .5543 .5221 .4983 .4792 .4632 .4495 .4375
4 .7127 .6669 .6418 .6238 .6094 .5974 .5871 .5781
5 .7732 .7344 .7137 .6991 .6876 .6779 .6697 .6625
6 .8129 .7792 .7615 .7493 .7396 .7316 .7248 .7188
7 .8409 .8111 .7957 .7851 .7768 .7700 .7641 .7590
8 .8616 .8350 .8213 .8120 .8048 .7987 .7936 .7891
9 .8776 .8536 .8413 .8329 .8265 .8211 .8165 .8125

.05 2 .5752 .5020 .4615 .4318 .4081 .3884 .3715 .3568
3 .7287 .6703 .6414 .6213 .6054 .5923 .5810 .5712
4 .8024 .7541 .7314 .7161 .7041 .6942 .6858 .6784
5 .8450 .8042 .7854 .7729 .7633 .7554 .7486 .7428
6 .8727 .8374 .8213 .8108 .8028 .7962 .7905 .7856
7 .8921 .8610 .8469 .8379 .8310 .8253 .8205 .8163
8 .9064 .8786 .8661 .8582 .8521 .8471 .8429 .8392
9 .9173 .8923 .8811 .8739 .8685 .8641 .8604 .8571

.025 2 .6981 .6049 .5656 .5387 .5175 .5001 .4852 .4723
3 .7400 .7111 .6926 .6784 .6667 .6568 .6482
4 .8069 .7838 .7696 .7588 .7501 .7426 .7362
5 .8466 .8273 .8157 .8071 .8001 .7941 .7889
6 .8728 .8563 .8465 .8393 .8334 .8284 .8241
7 .8914 .8770 .8685 .8622 .8572 .8529 .8493
8 .9053 .8924 .8849 .8795 .8751 .8713 .8681
9 .9160 .9045 .8978 .8929 .8890 .8856 .8828

.01 2 .6986 .6543 .6286 .6092 .5935 .5801 .5686
3 .8058 .7709 .7527 .7396 .7290 .7201 .7124
4 .8578 .8290 .8147 .8047 .7968 .7901 .7843
5 .8882 .8636 .8519 .8438 .8374 .8321 .8275
6 .9080 .8866 .8767 .8699 .8645 .8601 .8562
7 .9219 .9030 .8943 .8885 .8839 .8801 .8768
8 .9322 .9153 .9076 .9024 .8984 .8951 .8922
9 .9401 .9248 .9179 .9133 .9097 .9067 .9042

.005 2 .7642 .7029 .6764 .6576 .6426 .6300 .6191
3 .8042 .7847 .7719 .7618 .7534 .7461
4 .8544 .8389 .8290 .8214 .8150 .8096
5 .8842 .8713 .8632 .8571 .8520 .8477
6 .9040 .8929 .8861 .8809 .8767 .8731
7 .9180 .9082 .9024 .8980 .8943 .8912
8 .9284 .9198 .9146 .9107 .9075 .9048
9 .9365 .9287 .9241 .9207 .9178 .9154

Note: Missing cells mean that the test is not recommended or not feasible. The vertical lines
are discussed above Proposition 2.3.
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same test decision, then the decision does not change for any value between ϱ and
ϱ′. R and Stata commands that implement the test for any choice of ϱ and find the
largest feasible ϱ are available at https://hgmn.github.io/rea. For a given ϱ, it
is also possible to compute p-values as p̂X = inf{α : ϕα(X) = 1}. However, while
these p-values provide the smallest significance level under which the null hypothesis
would be rejected, they are not uniformly distributed and only satisfy the weak
inequality Pλ,0(p̂X ⩽ u) ⩽ u for all λ ∈ Λ.

I now turn to a discussion of four technical aspects of Theorem 2.1 and the
size bound ξq(w, ϱ) that forms the theoretical underpinning for the rearrangement
test. (Readers mostly interested in applying the rearrangement test can skip this
discussion and move ahead to Section 3.) First, I discuss the bound

1
2q+1︸ ︷︷ ︸
(i)

+ min
t>0

(
Φ
(√

q − 1wt
)q−1

+ 2Φ(−qt)
)

︸ ︷︷ ︸
(ii)

+
∫ ∞

0
Φ
(
(1 − w)ϱy

)q−1
φ(y)dy︸ ︷︷ ︸

(iii)

defined in (2.4). It has three components with simple interpretations: Component (i)
removes an unlikely event (X1 < µ0, X0,1 < µ0, . . . , X0,q < µ0 at the same time)
from consideration. Component (ii) is the cost incurred for the fact that the data are
centered by X̄0 instead of the unknown µ0.1 Component (iii) bounds the remaining
uncertainty uniformly in Λ after accounting for (i) and (ii). Once the event in (i) is
removed and µ0 can be treated as known because of (ii), there is a λ ∈ Λ such that
(iii) is attained. Taken together, ξq(wq(α, ϱ), ϱ) can therefore be roughly viewed
as a tight bound up to the two adjustments (i) and (ii). These adjustments are
generally small relative to (iii) for moderately large q. I use Table 1 to illustrate
their relative size. In the table, empty cells correspond to situations where there is
either no w such that ξq(w, ϱ) = α or more than α/2 of ξq(wq(α, ϱ), ϱ) is taken up
by (i)+(ii). Cells to the left of vertical lines are settings where between α/2 and
α/10 of the bound are taken up by (i)+(ii). The lack of tightness in the remaining
cells, as measured by (i)+(ii), is less than α/10. For these cells supλ∈Λ Eλ,0ϕα(X)
approximately equals α. As the table shows, ξq(wq(α, ϱ), ϱ) is an essentially tight
bound for supλ∈Λ Eλ,0ϕα(X) for q ⩾ 30. The bound is also nearly tight for values of
q as small as 15 as long as ϱ is not too large. As a referee points out, component (iii)
also cannot exceed 1/2, which effectively rules out significance levels above 1/2. The
1/2 is reached as ϱ → ∞ and is equivalent to a situation where the σk are all equal
to zero while σ is positive. In that case, (iii) is the probability that the mean-zero
normal variable X1 − µ0 exceeds X0,k − µ0, which now has point mass at 0. That
probability is equal to 1/2.

Second, inspection of the proof of Theorem 2.1 also reveals that if the parameter
space is shrunk to Λ ∩ {σk ⩾ σ

¯
for all k} to remove the potential zero variance for

one of the variables, the bound in (2.4) can be improved slightly to
1

2q+1 +
∫ ∞

0
Φ
(
(1 − w)ϱy

)q
φ(y)dy + min

t>0

(
Φ
(√

qwt
)q − Φ

(
−√

qwt
)q + 2Φ(−qt)

)
.

For the majority of values in Table 1, this decreases the weight by less than .001.
However, when q ⩽ 20, removing the possibility of a zero variance can meaningfully

1The minimizer does not have closed form but is easily found numerically. In particular,
at t = 1/q, Φ(

√
q − 1wt)q−1 + 2Φ(−qt) < Φ(1/√q)q−1 + 2Φ(−1) < 1 for q > 2. Because

Φ(
√
q − 1wt)q−1 + 2Φ(−qt) ⩾ 1 at t ∈ {0,∞}, the minimization problem always has an interior

solution. This also implies that the bound as a whole is a smooth function of w and ϱ.

https://hgmn.github.io/rea
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lower the bound for larger values of ϱ. The software packages therefore also give
the option to use this bound instead of (2.4).

Third, Theorem 2.1 shows that the rearrangement test has power against H1 :
µ1 > µ0 for every w ∈ (0, 1) but the power declines sharply at w = 1. I therefore
explore the behavior of the test with w near 1 further in the following result. It
provides a lower bound on the power of the test for fixed δ.

Proposition 2.2 (Lower bound on power). Let X1, X0,1, . . . , X0,q be independent
with X1 ∼ N(µ0 + δ, σ2) and X0,k ∼ N(µ0, σ

2
k) for 1 ⩽ k ⩽ q. For every w ∈ (0, 1),

σ, σ1, . . . , σq > 0, and δ > 0,

inf
µ0∈R

Eλ,δϕ(X,w) ⩾ 2q sup
t⩾0

Φ
(
δ

σ
− 1 + w

1 − w
t

) q∏
k=1

(
Φ
(

σ

σk
t

)
− 0.5

)
.

The supremum is attained on t ∈ (0,∞). The right-hand side is strictly positive and
converges to 1 as δ → ∞.

The bound shows that the test exhibits a standard relationship between the signal δ
and the noise components σ1, . . . , σq. Power is low if the signal relative to σ is weak
or the noise in the control group relative to σ is strong. The latter relationship is in
contrast to Theorem 2.1, where small σk relative to σ were problematic. In addition,
the bound also clarifies that w dampens δ through the function w 7→ (1+w)/(1−w),
which is arbitrarily large for w sufficiently close to 1. A w very close to 1 can
therefore drown out a large treatment effect even if the noise coming from the
control observations is mild. (The role of the supremum is simply to find the best
possible balance for a given set of parameters.) It is also worth noting that the
bound is tight enough to converge to 1 as δ → ∞ and to 0 as w → 1.

Finally, before concluding this section, I show that the rearrangement test remains
approximately valid for random vectors Xn converging in distribution to the random
vector X = (X1, X0,1, . . . , X0,q) described in Theorem 2.1. The reason is that
Eϕ(Xn, w) and Eϕ(X,w) eventually coincide whenever X has independent entries
and a smoothly distributed first entry. The X in Theorem 2.1 easily satisfies these
conditions, which makes ϕα(Xn) asymptotically an α-level test.

Proposition 2.3 (Large sample approximation). Let X1, X0,1, . . . , X0,q be indepen-
dent and let X1 have a continuous distribution. If Xn ⇝ X, then Eϕ(Xn, w) →
Eϕ(X,w) for every w ∈ (0, 1).

I use Theorem 2.1 and Proposition 2.3 in the next section to construct a sim-
ple method for inference with a single treated cluster. Section 4 shows how the
rearrangement test performs in Monte Carlo experiments.

3. Inference with a single treated cluster

In this section, I use a single high-level condition to extend the rearrangement
test introduced in the previous section to a test about a scalar parameter in research
designs with a finite number of large, heterogeneous clusters where only a single
cluster received treatment. I then outline how these results can be applied in
empirical practice.

Suppose data from q+1 large clusters (e.g., states, industries, or villages, possibly
observed over more than one time period) are available. Data are dependent within
clusters but independent across clusters. The exact form of dependence is unknown
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and not presumed to be estimable. An intervention took place during which one
cluster received treatment and and q clusters did not. The quantity of interest is
a treatment effect or an object related to it that can be represented by a scalar
parameter δ. Because the entire cluster was treated, this parameter is only identified
up to a location shift θ0 within the treated cluster and therefore only the left-hand
side of

θ1 = θ0 + δ

can be identified from this cluster. If the treated cluster would have behaved
similarly to the untreated clusters in the absence of an intervention, then θ0 can be
identified from each untreated cluster. Pairwise comparison then identifies δ.

The identification strategy outlined in the preceding paragraph is the idea behind
differences in differences—arguably the most popular identification strategy in
modern empirical research—and a variety of other models. The goal of this section
is to use the rearrangement test to provide a generic method for testing the hypothesis

H0 : δ = 0,

or, equivalently, H0 : θ1 = θ0. I achieve this by obtaining an estimate θ̂1 of θ1 and
estimates θ̂0,1, . . . , θ̂0,q of θ0 so that

θ̂n = (θ̂1, θ̂0,1 . . . , θ̂0,q)

is approximately a vector of independent but potentially heterogeneous normal
variables that can be used as if it were the data vector X from Section 2.

The following example explains how to construct θ̂n in a simple situation. I
discuss construction of θ̂n for difference in differences towards the end of this section.

Example 3.1 (Regression with cluster-level treatment). Consider a linear regression
model

Yi,k = θ0 + δDk + β′
kXi,k + Ui,k,

where i indexes individuals within cluster k. There are q+ 1 clusters and individuals
in cluster k = q + 1 received treatment (Dq+1 = 1) but those in 1 ⩽ k ⩽ q did
not (Dk = 0). The parameter of interest δ on the treatment indicator Dk can
be interpreted as an average treatment effect under suitable conditions. See, e.g.,
S loczyński (2018, 2020) and references therein for a precise discussion. The regression
may also include covariates Xi,k that vary within each cluster and have coefficients
βk that may vary across clusters. The condition E(Ui,k | Dk, Xi,k) = 0 identifies
θ1 = θ0 + δ within the treated cluster and θ0 within the untreated clusters. The
preceding display can then be written as

Yi,k =
{
θ0 + β′

kXi,k + Ui,k, 1 ⩽ k ⩽ q,

θ1 + β′
kXi,k + Ui,k, k = q + 1.

View these as q + 1 separate regressions and use the least squares estimates of the
constants θ1 and θ0 as the vector θ̂n = (θ̂1, θ̂0,1 . . . , θ̂0,q) described above. □

I will now show that the cluster-level statistics θ̂n can be used together with
the results in the previous section to perform a consistent test as the sample size
n grows large. The test is not limited to parameters estimated by least squares.
Instead, consistency relies on the condition that a centered and scaled version of
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some estimate θ̂n converges to a (q + 1)-dimensional normal distribution,

√
n

(
θ̂1 − θ1
σ(θ1) ,

θ̂0,1 − θ0
σ1(θ0) , . . . ,

θ̂0,q − θ0
σq(θ0)

)
θ
⇝ N(0, Iq+1), (3.1)

where θ⇝ denotes weak convergence under θ = (θ1, θ0). For fixed θ, the display can
be interpreted as

√
n(θ̂1− θ1, . . . , θ̂0,1− θ0, . . . , θ̂0,q − θ0)⇝ N(0,diag(σ, σ1, . . . , σq))

to include the case that one of the σ1, . . . , σq may be zero as in Theorem 2.1.
A key feature of condition (3.1) is that the σ and σ1, . . . , σq are not assumed to

be known or estimable by the researcher. This is important for applications because
consistent variance estimation generally requires knowledge of an explicit ordering
of the dependence structure within each cluster. While time-dependent data are
automatically ordered, it may be difficult or impossible to infer or credibly assume
an ordering of the data within states or villages. In contrast, (3.1) can be established
under weak (short-range) dependence conditions that only require existence of a
potentially unknown ordering for which the dependence of more distant units decays
sufficiently fast. El Machkouri, Volný, and Wu (2013) present convenient moment
bounds and limit theorems for this situation. For more results in this direction,
see also Bester et al. (2011) and references therein. In general, the convergence
in (3.1) also implicitly requires the number of observations in all clusters to grow
with the sample size n. However, the clusters are not required to have similar or
even identical sizes. Another noteworthy feature of condition (3.1) is the diagonal
covariance matrix of the limiting distribution. It is the only independence condition
that is imposed on the clusters.

I now show that under the joint convergence (3.1), a rearrangement test that
uses θ̂n is asymptotically of level α with a single treated cluster and a fixed number
of control clusters. The test ϕα(θ̂n), as defined in (2.6), has power against all
fixed alternatives θ1 = θ0 + δ with δ > 0 and local alternatives θ1 = θ0 + δ/

√
n

converging to the null. In the latter situation, θ0 is fixed and θ = (θ0 + δ/
√
n, θ0)

implicitly depends on n. The convergence in (3.1) is then a statement about an
entire sequence (θ0 + δ/

√
n, θ0) instead of a single point. Results for alternatives

with δ < 0 follow from the same result by considering ϕα(−θ̂n). These tests can be
combined into a two-sided test that has power against fixed and local alternatives
from either direction. Algorithm 3.5 at the end of this section shows how this can
be implemented.

Theorem 3.2 (Consistency and local power). Suppose
√
n(θ̂1 − θ1, . . . , θ̂0,1 − θ0, . . . , θ̂0,q − θ0)⇝ N

(
0,diag(σ, σ1, . . . , σq)

)
with σ̄ ⩾ σ, at most one σk = 0 for 1 ⩽ k ⩽ q, and σk ⩾ σ

¯
> 0 for all remaining k.

If θ1 = θ0 and ϱ = σ̄/σ
¯
, then

lim
n→∞

Eϕα(θ̂n) ⩽ α, every α, ϱ with 0 < wq(α, ϱ) < 1,

where wq(α, ϱ) is defined in (2.5). If θ1 > θ0, then Eϕα(θ̂n) → 1. If (3.1) holds with
θ = (θ0 + δ/

√
n, θ0) and the σ, σ1, . . . , σq are continuous and positive at θ0, then

lim
n→∞

Eϕα(θ̂n) ⩾ 2q sup
t⩾0

Φ
((

δ

σ(θ0)−
1 + wq(α, ϱ)
1 − wq(α, ϱ) t

)) q∏
k=1

(
Φ
(

σ(θ0)
σk(θ0) t

)
−0.5

)
> 0.
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Remarks. (i) Because ϕα(θ̂n) = 1 if and only if ϕα(a(θ̂n− θ01q+1)) = 1, where a > 0
and 1q+1 is a (q + 1)-vector of ones, the

√
n-rate in (3.1) and in the theorem can be

replaced by any other rate as long as the asymptotic normal distribution in (3.1)
is still attained. Several semiparametric or nonstandard estimators are therefore
covered by the theorem.

(ii) It is sometimes of interest in applications to test the null hypothesis H0 : θ1 =
θ0 + γ for a given γ. In that case, define Γ = (γ1{k = 1})1⩽k⩽q+1 and reject if
ϕα(θ̂n−Γ) = 1. Replace θ0 by θ0 +γ in Theorem 3.2 and use part (i) of this remark
to see that this leads to a consistent test. Confidence intervals for δ = θ1 − θ0 can
be obtained by inverting these tests for a given ϱ. By construction, all values of γ
that cannot be rejected form an asymptotic 1 − α confidence interval. □

I now discuss how the high-level condition (3.1) can be verified in an application.
The specific example I use is difference-in-differences estimation but the arguments
presented here apply more broadly. See also Canay et al. (2017) and Hagemann (2022)
for similar types of arguments in other models. I then compare the rearrangement
test to the test of Conley and Taber (2011) in Example 3.4 and use this comparison
to illustrate how homogeneity can be imposed on the rearrangement test.

Example 3.3 (Difference in differences). Consider the panel model
Yi,t,k = θ0It + δItDk + β′

kXi,t,k + ζi,k + Ui,t,k, (3.2)
where i indexes individuals in unit k ∈ {1, . . . , q + 1} at time t ∈ {0, 1}. Treatment
occurred between periods 0 and 1. Right-hand side variables are a post-intervention
indicator It = 1{t = 1}, a treatment indicator Dk that equals 1 if unit k ever
received treatment, individual fixed effects ζi,k, and other covariates Xi,t,k that for
every k vary at least before or after the intervention. The collection of pre and
post intervention data from unit k forms the k-th cluster. Let nk be the number of
individuals in cluster k so that n = 2

∑q+1
k=1 nk is the total sample size. View each

cluster as a separate regression and rewrite (3.2) in first differences as

∆Yi,k =
{
θ0 + β′

k∆Xi,k + ∆Ui,k, 1 ⩽ k ⩽ q,

θ1 + β′
k∆Xi,k + ∆Ui,k, k = q + 1,

where ∆Yi,k = Yi,1,k − Yi,0,k and so on. Provided E(∆Ui,k | ∆Xi,k) = 0, the data
identify θ1 = θ0 + δ in a treated cluster and θ0 in an untreated cluster. The least
squares estimates θ̂1 and θ̂0,k of the parameters θ1 and θ0 are suitable cluster-level
estimates if θ̂n = (θ̂1, θ̂0,1, . . . , θ̂n,q) satisfies condition (3.1).

In the absence of covariates (i.e., βk ≡ 0), the centered and scaled least squares
estimate in a control cluster under H0 can be expressed as

√
n(θ̂0,k − θ0) =

(
n

nk

)1/2

n
−1/2
k

nk∑
i=1

∆Ui,k.

The same is true for
√
n(θ̂1−θ0) with k = q+1 on the right-hand side of the display. If

the number of individuals per cluster is large in the sense that n/nk → ck ∈ (0,∞) for
1 ⩽ k ⩽ q + 1, then condition (3.1) already holds if n−1/2(

∑nk

i=1 Ui,0,k,
∑nk

i=1 Ui,1,k)
is independent across 1 ⩽ k ⩽ q + 1 and has a non-degenerate normal limiting
distribution for each k. The latter condition can be ensured with a central limit
theorem for spatially dependent data. See, e.g., Jenish and Prucha (2009) and El
Machkouri et al. (2013) for appropriate results. If the number of individuals per
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cluster is small, then Theorem 2.1 implies that the rearrangement test can still be
applied under the assumption that ((Ui,0,k)T1⩽i⩽nk

, (Ui,1,k)T1⩽i⩽nk
) is multivariate

normal for 1 ⩽ k ⩽ q + 1. This last condition may be strong but serves to illustrate
that θ̂1 and θ̂0,k need not even be consistent for the test to be valid.

Now consider pooled cross sections with nk individuals in period 0, mk individuals
in period 1, and ζi,k ≡ ζk. The calculations in the preceding paragraph still apply
with minor modifications after replacing nk in period 1 by mk. The analysis is no
longer in first differences but the underlying conditions are essentially identical as
long as n/nk → ck ∈ (0,∞) and n/mk → c′k ∈ (0,∞) for 1 ⩽ k ⩽ q + 1, where n is
the total sample size. If the number of individuals available post intervention m =∑q+1

k=1 mk is relatively small in the sense that m/nk → 0 and m/mk → c′k ∈ (0,∞),
the scale invariance discussed in the remarks below Theorem 3.2 allows replacement
of the

√
n in (3.1) by

√
m. Then (3.1) holds if n

−1/2
k

∑nk

i=1 Ui,0,k = OP (1) and
m

−1/2
k

∑mk

i=1 Ui,1,k obeys a central limit theorem for 1 ⩽ k ⩽ q + 1. The same
argument applies with the roles of nk and mk reversed if relatively few individuals
are available pre intervention.

The calculations in the preceding two paragraphs can be generalized to include
covariates and additional time periods at the expense of more involved notation
and non-singularity conditions. The same types of arguments also apply if each
cluster consists of one or few units over many time periods, although the conditions
for time dependence are generally less involved. See Dedecker et al. (2007) for a
comprehensive overview. These remarks and the calculations in this example also
apply to the regression model in Example 3.1. □

Remark (Nonlinear models). The methodology presented here also includes nonlinear
models because the parameter δ does not need to be interpretable by itself. For
example, suppose the model in Example 3.1 is the latent model in a binary choice
framework with symmetric link function F and βk ≡ β. Then F (θ0 + δ + β′x) −
F (θ0 + β′x) for some x may be the treatment effect of interest but H0 : δ = 0
still determines whether the treatment effect is zero or not. Estimates of θ0 and
θ1 = θ0 + δ from these models typically do not have closed form in the presence of
covariates but generally have asymptotic linear representations to which the same
types of arguments as in Example 3.3 can be applied. □

Example 3.4 (Two-way fixed effects; Conley and Taber, 2011). The Conley and
Taber (2011) test is designed specifically for difference in differences and applies to
models with a single treated cluster. They study the two-way fixed effects model

Yt,k = δItDk + ηt + ζk + Ut,k, (3.3)

where It is a post-intervention indicator, Dk = 1{k = q+1} is a treatment indicator,
and ηt and ζk are time and cluster fixed effects, respectively. Let Ū−,k and Ū+,k be
time averages of Ut,k pre and post intervention and define ∆Ūk = Ū+,k − Ū−,k. The
fixed effects estimator δ̂ can be written as δ̂ = δ + ∆Ūq+1 −

∑q
k=1 ∆Ūk/q, where∑q

k=1 ∆Ūk/q is small in probability as q → ∞ under regularity conditions imposed
by Conley and Taber. Their main identifying assumption is that the distribution of
the Ut,k is such that ∆Ūq+1 and ∆Ūk have identical distributions for every k. This
allows them to approximate the distribution of δ + ∆Ūq+1 by δ + ∆Ūk as q → ∞.
(The exact test procedure is described in Example 4.1 ahead.) Conley and Taber’s
conditions fail, e.g., if a Ut,k from any control cluster k = 1, . . . , q in one time period
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t is more or less variable than Ut,q+1. The problem can be remedied (as q → ∞)
if the exact form of the heterogeneity is known (Ferman and Pinto, 2019; Ferman,
2020) but this is not assumed here.

Now consider the rearrangement test. Let ∆Ȳk = Ȳ+,k − Ȳ−,k be the difference
of post and pre intervention averages of Yt,k. Similarly, use the post and pre
intervention averages η̄+ and η̄− of ηt to define θ0 = η̄+ − η̄− and θ1 = θ0 + δ.
The rearrangement test computes q + 1 separate artificial regressions of Yt,k on a
constant and the post-intervention indicator It,

Yt,k =
{
ζ + θ0It + errort,k, 1 ⩽ k ⩽ q,

ζ + θ1It + errort,k, k = q + 1,
(3.4)

where ζ is the intercept in each regression. The least squares estimates of θ0 and
θ1 satisfy θ̂0,k = ∆Ȳk = θ0 + ∆Ūk for 1 ⩽ k ⩽ q and θ̂1 = ∆Ȳq+1 = θ1 + ∆Ūq+1.
Following Conley and Taber (2011), I interpret (3.3) as coming from individual-
level data aggregated to the cluster level with a fixed number of time periods.
The estimates θ̂1, θ̂0,1, . . . , θ̂0,q can then be viewed be approximately normal. The
rearrangement test constrains Var(∆Ūq+1)/Var(∆Ūk) to be at most ϱ2 for all but
one k. Here it is important to note that ϱ2 = 1 is not equivalent to Conley and
Taber’s assumptions. The rearrangement test at ϱ2 = 1 still allows all control
clusters to be arbitrarily more variable than the treated clustered whereas the
Conley-Taber test presumes full homogeneity across clusters.

Imposing homogeneity on the rearrangement test reduces it to a standard permu-
tation test with data θ̂n = (θ̂1, θ̂0,1, . . . , θ̂0,q). If the weighting scheme is removed, the
difference-of-means statistic (2.2) becomes T̄ (θ̂n) := θ̂1 −

∑q
k=1 θ̂0,k/q and a critical

value from its permutation distribution can be used. Let gkθ̂n be the action of switch-
ing the location of θ̂1 and θ̂0,k in θ̂n, and let T̄(1)(θ̂n) ⩽ T̄(2)(θ̂n) ⩽ . . . ⩽ T̄(q+1)(θ̂n)
be the ordered values of (T̄ (θ̂n), T̄ (g1θ̂n), . . . , T̄ (gq θ̂n)). Using arguments as in Canay
et al. (2017) or Hagemann (2023), it is then straightforward to show that

T̄ (θ̂n) > T̄(⌈(1−α)(q+1)⌉)(θ̂n),
where ⌈a⌉ is the smallest integer larger than a, is an asymptotically α-level test under
(3.1) if σ = σ1 = · · · = σq. Note that this test is different from the Conley-Taber test.
In the present case, their test takes the order statistics k 7→ θ̂0,(k) of θ̂0,1, . . . , θ̂0,q
and rejects if

θ̂1 > θ̂0,(⌈(1−α)q⌉).

This is not a proper permutation test because it does not include θ̂1 in the null
distribution. As a result, it will tend to over-reject when q is small even if the
components of θ̂n are iid. I illustrate this point numerically in Example 4.1. □

Before concluding this section, I present a brief summary of how the rearrangement
test can be implemented in practice. By Theorem 3.2, the following procedure
provides an asymptotically α-level test in the presence of a finite number of large
clusters when only a single cluster received treatment. The test is computationally
simple and does not require simulation or resampling, can be two-sided or one-sided
in either direction, is able to detect all fixed alternatives, and is powerful against
1/

√
n-local alternatives. Recall that ϱ here measures how much more variable the

estimate from the treated cluster θ̂1 can be relative to the second-least variable
control cluster estimate θ̂0,k. A ϱ of 5 means that the (asymptotic) variance of θ̂1
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can be up to 52 = 25 times larger. There is no restriction on how much less variable
θ̂1 can be than any of the other estimates and θ̂1 can be infinitely more variable
than the least variable control cluster. (See also the discussion above Theorem 2.1.)

Algorithm 3.5 (Rearrangement test). (1) Use Table 1 or the provided software
to obtain w for the number of available control clusters q, desired significance
level α, and an initial value for the tolerance for heterogeneity (e.g., ϱ = 1).

(2) Compute for each untreated cluster k = 1, . . . , q an estimate θ̂0,k of θ0 and
compute an estimate θ̂1 of θ1 from the treated cluster so that the difference
θ1 − θ0 is the treatment effect of interest. (See Examples 3.1-3.4 above.)
Use θ̂n = (θ̂1, θ̂0,1 . . . , θ̂0,q) as if it were X in (2.1) to compute S = S(θ̂n, w)
with w as in Step (1). Note that X̄0 is replaced here by q−1∑q

k=1 θ̂0,k.
(3) Reorder the entries of S from largest to smallest. Denote this by S▽ as

defined above (2.2). Compute T (S) and T (S▽) as in (2.2).
(4) Reject H0 : θ1 = θ0 in favor of

(a) H1 : θ1 > θ0 if T (S) = T (S▽).
(b) H1 : θ1 < θ0 if T (−S) = T ((−S)▽).
(c) H1 : θ1 ̸= θ0 if either T (S) = T (S▽) or T (−S) = T ((−S)▽) but use

α/2 in Step (1). □
(5) If the null was rejected in Step (4), increase ϱ (e.g., by .1) and restart at

Step (1). Otherwise report the test result with ϱ.

R and Stata commands that implement Algorithm 3.5 and the test for a given
choice of ϱ are available at https://hgmn.github.io/rea. The next section shows
how the rearrangement test performs in simulations and an application.

4. Numerical results

This section explores the finite-sample behavior of the rearrangement test in two
experiments. Example 4.1 continues the comparison of the rearrangement test to the
widely used Conley and Taber (2011) test in the two-way fixed effects model with
clusters. Example 4.2 applies the rearrangement test to the results of Garthwaite
et al. (2014). The discussion focuses on one-sided tests to the right but the results
apply more generally.

Example 4.1 (Two-way fixed effects; Conley and Taber, 2011, cont.). Following
Conley and Taber (2011, sec. V), the data are generated from the two-way fixed
effects model

Yt,k = δItDk + βXt,k + ηt + ζk + Ut,k, (4.1)
where It is a post-intervention indicator, Dk is a treatment indicator, Xt,k is a
covariate, and ηt and ζk are time and cluster fixed effects, respectively. The covariate
is constructed as Xt,k = Dk/2 + Zt,k, where the Zt,k are iid copies of a standard
normal variable. The error term satisfies

Ut,k = γUt−1,k + σ1{k=q+1}Vt,k, (4.2)

where the Vt,k are iid standard normal and k = q + 1 is the one cluster that received
treatment. The baseline model uses ηt ≡ 0 ≡ ζk, ten time periods with four post-
intervention periods, and, unless stated otherwise, γ = .5, β = 1, and δ = 0. I do
not consider all of Conley and Taber’s variations of their model but expand upon
their analysis by investigating smaller numbers of control clusters q and values of σ

https://hgmn.github.io/rea
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Figure 2. Rejection frequencies of a true null as a function of the heterogeneity
σ for the Conley-Taber test (left) and the rearrangement test (right) with
(i) q = 50 control clusters and normal errors (solid lines), (ii) q = 15 and normal
errors (long-dashed), and (iii) q = 50 and chi-squared errors (dotted). The
short-dashed line equals .05. The rearrangement test uses ϱ = 2 (vertical line).

other than one. In the latter situation, the Conley-Taber test can be expected to fail
because it relies heavily on homogeneity of all clusters in absence of an intervention.

The Conley-Taber test with one treated cluster can be computed as follows:
(1) Regress the outcome on ItDk, time and cluster fixed effects, and other covariates.
Denote the coefficient on ItDk by δ̂. (2) Split the residuals by cluster and run, for
each of the q control clusters separately, regressions of the residuals on a constant
and It. (3) Compute the 1 − α empirical quantile of the q coefficients on It. Reject
H0 : δ = 0 if δ̂ is larger than that quantile.

The rearrangement test computes q + 1 separate artificial regressions of Yt,k on a
constant, the post-intervention indicator It, and covariates,

Yt,k =
{
ζ + θ0It + βXt,k + errort,k, 1 ⩽ k ⩽ q,

ζ + θ1It + βXt,k + errort,k, k = q + 1.
(4.3)

Because δ = θ1 − θ0, I apply the rearrangement test to the least squares estimates
θ̂0,1, . . . , θ̂0,q and θ̂1 of θ0 and θ1, respectively. I view (4.1) as coming from individual-
level data aggregated to the cluster level with a fixed number of time periods.
The estimates θ̂1, θ̂0,1, . . . , θ̂0,q should therefore be approximately normal for the
rearrangement test to apply. To test deviations from this assumption in finite
samples, I also consider a situation where the innovations Vt,k in (4.2) are χ2

2/2
variables centered at zero. These innovations are asymmetric but still have unit
variance.

Figure 2 shows the rejection frequencies of a true null hypothesis H0 : δ = 0 as a
function of σ ∈ {1, 1.05, 1.1, . . . , 2.5} for the two tests at the 5% level (short-dashed
lines). The assumptions of the Conley-Taber test (left) hold as q → ∞ when σ = 1
but are violated at any sample size as soon as σ > 1. The rearrangement test (right)
here uses ϱ = 2 (vertical line). The assumptions of the rearrangement test are
violated as soon as σ > 2. The figure shows rejection rates in 10,000 Monte Carlo
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Table 2. Rejection frequencies of a true null for specifications (1)-(5) in
Example 4.1 for (i) the rearrangement test with ϱ = 2 (R), (ii) the rearrangement
test with homogeneity imposed on the test (R-Ho), (iii) the Conley-Taber test
(CT), (iv) the Ferman-Pinto test with correctly specified variance (FP-C), and
(v) the Ferman-Pinto test with incorrectly specified variance (FP-I).

σ = 2 σ = 1
R R-Ho CT FP-C FP-I R R-Ho CT FP-C FP-I

q = 25 (1) .050 .169 .232 .077 .355 .002 .043 .083 .083 .240
(2) .047 .166 .231 .077 .353 .002 .041 .080 .080 .239
(3) .047 .171 .227 .077 .360 .001 .042 .084 .084 .240
(4) .048 .158 .223 .081 .349 .004 .039 .080 .080 .224
(5) .045 .167 .228 .072 .351 .002 .041 .084 .084 .242

q = 50 (1) .044 .176 .211 .054 .340 .002 .042 .062 .062 .218
(2) .042 .177 .210 .057 .341 .003 .040 .065 .065 .220
(3) .048 .175 .210 .060 .339 .002 .038 .059 .059 .217
(4) .042 .160 .193 .057 .331 .003 .042 .064 .064 .208
(5) .043 .177 .207 .057 .343 .002 .038 .059 .059 .214

experiments for each horizontal coordinate with (i) q = 50 control clusters (solid
lines), (ii) q = 15 (long-dashed), and (iii) q = 50 but the Vt,k are iid copies of a
(χ2

2 − 2)/2 variable (dotted). Both methods were faced with the same data. As can
be seen, the Conley-Taber test over-rejected slightly at σ = 1 but quickly became
unusable as σ increased. It exceeded a 10% rejection rate at about σ = 1.25. At
σ = 2.5, the Conley-Taber test falsely discovered a nonzero effect in about 25% of all
cases. In contrast, the rearrangement test was able to reject at or below the nominal
level of the test as long as σ ⩽ ϱ. For σ > ϱ, the rearrangement test eventually
started to over-reject. It performed worst at σ = 2.5, where it rejected in 6.8-8.8%
of all cases.

The rearrangement test is designed to be robust against heterogeneity of unknown
form. If σ were known, then the tests of Ferman and Pinto (2019) and Ferman (2020)
could be used. Ferman and Pinto (2019) combine the idea behind the Conley-Taber
test with a bootstrap but focus on the situation where heterogeneity only comes
from differences in cluster sizes. Ferman (2020) considers more general situations
where the heterogeneity is known up to an estimable parameter. Neither of these
cases is assumed here and neither paper suggests using their test when the variance
is not known or not estimable. I follow Ferman (2020, Section 3) and rescale the q
coefficients from step (3) of the Conley-Taber test (as described above equation (4.3))
to have the same variance as the coefficient from the treated cluster. To compare
this test to the rearrangement test, I conducted experiments in five variations of
the model used for Figure 2 when q ∈ {25, 50} and σ ∈ {1, 2}:

(1) Baseline model (4.1) and (4.2), γ = .5, Vt,k standard normal.
(2) Everything as in (1) but γ = .1.
(3) Everything as in (1) but γ = .9.
(4) Everything as in (1) but Vt,k iid χ2

2/2 centered at zero.
(5) Everything as in (1) but Xt,k = DkWt,k + Zt,k, Wt,k iid standard normal.

Table 2 shows rejection frequencies of a true null hypothesis in 10,000 Monte
Carlo experiments per entry for specifications (1)-(5) with the following tests:
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Figure 3. Rejection frequencies of the rearrangement test (ϱ = 2) under the
alternative as a function of the heterogeneity σ at δ = 2 (left) and δ = 3 (right)
with (i) and (ii) as in Figure 2, (iii) is (i) with weak time dependence γ = .1
(short-dashed grey), (iv) is (i) with strong time dependence γ = .9 (solid grey)
(v) is (i) with chi-squared errors (dotted). The short-dashed line equals .05.

R: Rearrangement test with ϱ = 2.
R-Ho: Rearrangement test with homogeneity imposed on θ̂n. As described at

the end of Example 3.4, this is equivalent to a permutation test with the
difference of means T̄ (θ̂n) = θ̂1 −

∑q
k=1 θ̂0,k/q.

CT: Conley-Taber test.
FP-C: Ferman-Pinto test with correctly specified heterogeneity where the

researcher knows σ.
FP-I: Ferman-Pinto test with incorrectly specified heterogeneity. The test

incorrectly specifies .5 instead of σ.
As can seen, the Conley-Taber test again over-rejected slightly even when the

clusters were homogeneous but this issue disappeared when q was large. When
the clusters were heterogeneous, the Conley-Taber test over-rejected severely. The
Ferman-Pinto test used here is a rescaled Conley-Taber test. It performed well
when the variance was known but rejected far too many true null hypotheses when
the variance was misspecified. In contrast, the rearrangement test was able to
control size in all situations. The homogeneous version of the rearrangement test is
a proper permutation test that is valid under homogeneity for fixed q; it had size
close to nominal level when the clusters were homogeneous. It over-rejected under
heterogeneity but substantially less than then Conley-Taber test.

I now turn to the performance of the rearrangement test under the alternative.
(I discuss the behavior of the Conley-Taber and Ferman-Pinto tests under the
alternative towards the end of this example.) I consider the same models as before
but use nonzero δ. Figure 3 shows the results with δ = 2 (left) and δ = 3 (right). The
baseline model is again model (i) with q = 50 control clusters, standard normal Vt,k,
and time dependence set to γ = .5 (solid lines). The other models deviate from (i) in
the following ways: (ii) uses q = 15 (long-dashed), (iii) lowers the time dependence
to γ = .1 (short-dashed grey), (iv) increases the time dependence to γ = .9 (solid
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Figure 4. Rejection frequencies of the rearrangement test with (i) full homo-
geneity imposed (solid lines), (ii) ϱ = 1 (dashed), and (iii) ϱ = 2 (dotted) as a
function of the treatment effect δ at σ = 1 (left) and σ = 1.5 (right). Grey lines
are the Conley-Taber/Ferman-Pinto test with correctly (left) and incorrectly
(right) specified heterogeneity. The null hypothesis is true at δ = 0.

grey), and (v) changes the innovations to (χ2
2−2)/2 (dotted). As can be seen, having

to guard against near arbitrary heterogeneity of unknown form made it difficult to
detect a relatively small treatment effect (left) when the number of control clusters
was low, the distribution of the innovations was non-normal, or the treatment
effect was obfuscated by strong time dependence. However, the rearrangement test
reliably detected smaller treatment effects when the time dependence was relatively
weak. Increasing the treatment effect (right) improved detection rates substantially
and uniformly across models, with strong time dependence again being the most
challenging situation. The rearrangement test now had considerable power even
when only 15 control clusters were available, the innovations were asymmetric, or
the time dependence was not extreme. Power was very high when there was little
time dependence.

Figures 2 and 3 also illustrate two noteworthy aspects of the rearrangement test:
(1) The inequality the rearrangement is based on is nearly tight (as discussed in
the paragraph below equation (2.8)) in the sense that it cannot be meaningfully
be improved upon unless q is very small. This can be seen in the right panel of
Figure 2, where the rejection rate of the test was essentially at or slightly below
nominal level when σ = ϱ. (2) Rejection rates under the null hypothesis increase
with σ but this does not necessarily translate into increased rejection rates under
the alternative for large σ. This is seen in the right panel of Figure 3, where the
power decreases with σ in the presence of weak time dependence (γ = .1).

Finally, I investigate the trade-off between size, power, and robustness of the
rearrangement test for different degrees of heterogeneity imposed on the test when
the underlying data are homogeneous. To this end, I used the baseline model
(4.1) and (4.2) with q = 50, γ = .5, and standard normal Vt,k. Figure 4 shows
the rejection rates of the rearrangement test with (i) full homogeneity imposed
(solid lines), (ii) ϱ = 1 (dashed), and (iii) ϱ = 2 (dotted) for treatment effects
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δ ∈ {0, .2, .4, . . . . , 4} at σ = 1 (left) and σ = 1.5 (right). The null hypothesis is
true at δ = 0. Each δ coordinate uses 10,000 Monte Carlo repetitions. As can
be seen, when there is homogeneity (left), then imposing that the treated cluster
cannot be more variable than the control clusters (ϱ = 1) led to a mild power loss.
Allowing the treated cluster to be much more heterogeneous (ϱ = 2) was more costly.
When some heterogeneity was present (right), the rearrangement test with ϱ = 1
over-rejected slightly but the rearrangement test with ϱ = 2 was able to control size
while remaining powerful against deviations from the null.

The grey lines in Figure 4 are the Conley-Taber/Ferman-Pinto test. I specify
σ = 1 for the Ferman-Pinto test in both panels. The Conley-Taber and Ferman-
Pinto tests are then identical but slightly misspecified in the right panel where the
true σ equals 1.5. Because q was large, these tests did not over-reject under the null
when the test was correctly specified. However, they over-rejected substantially and
more than the other tests when they were misspecified. This lack of size control
translated into higher rejection rates under the alternative.

I also conducted a large number of additional experiments under the null and
the alternative. I considered (not shown) other distributions for Vt,k and other
values of the AR(1) coefficient γ, the number of time periods, the number of post-
intervention periods, and the number of control clusters. However, I found that
these changes had little impact on the results. The Conley-Taber test performed
well when there was no heterogeneity but over-rejected wildly otherwise. More
results on the Conley-Taber test can be found in Canay et al. (2017), who come
to the same conclusion in their experiments. The Ferman-Pinto test performed
well when the variance was specified correctly. The rearrangement test continued
to be highly robust to heterogeneity as long as ϱ was not chosen to be much too
small. Among the specifications I considered, the number of control clusters had
the highest impact on the size and power of the rearrangement test, with q ⩾ 30
leading to the best results. □

Example 4.2 (Health insurance and labor supply; Garthwaite et al., 2014). In
this example, I use the rearrangement test to reanalyze the results of Garthwaite
et al. (2014). They use a difference-in-differences design to study the effects of
a large-scale disruption of public heath insurance on labor supply. Their design
exploits that in 2005 approximately 170,000 adults in Tennessee (roughly 4% of the
state’s non-elderly, adult population) abruptly lost access to TennCare, the state’s
public health insurance system. Garthwaite et al. use data from the 2001-2008
March Current Population Survey to determine health insurance and work status
for the years 2000-2007. The comparison groups for Tennessee are the 16 other
Southern states2 defined by the U.S. Census Bureau.

The main treatment effect in Garthwaite et al. (2014, their β in their equation
(1)) can be estimated as δ in

Yt,k = θ0It + δItDk + ζk + Ut,k,

where Yt,k is a state-by-year mean of an outcome of interest for state k in year
t, It = 1{t ⩾ 2006} is a post-intervention indicator, and Dk equals one for an

2The Southern states are Alabama, Arkansas, Delaware, the District of Columbia, Florida,
Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, Tennessee, Texas,
Virginia, South Carolina, and West Virginia.
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Table 3. Effects of TennCare disenrollment in Garthwaite et al. (2014, Table
II.A) with their auto-correlation robust bootstrap standard errors (top) and
the largest ϱ at which a rearrangement test robust to arbitrary correlation
within states and over time still detects an effect (bottom).

(1) (2) (3) (4) (5) (6)
Employed Employed Employed Employed

Has public working working working working
health <20 hours ⩾20 hours 20-35 hours ⩾35 hours

insurance Employed per week per week per week per week
δ̂ −0.046 0.025 −0.001 0.026 0.001 0.025

s.e. (0.010) (0.011) (0.004) (0.010) (0.007) (0.011)
p-val. [0.000] [0.019] [0.621] [0.011] [0.453] [0.020]

Rearrangement test: largest ϱ at which H0 : δ = 0 is rejected
α (“×” indicates that H0 : δ = 0 cannot be rejected for any ϱ ⩾ 0)
.10 2.331 1.339 × 1.486 × ×
.05 1.707 0.986 × 1.093 × ×

observation from Tennessee and equals zero otherwise. There are 17× 8 = 136 state-
by-year means in total. Garthwaite et al. estimate the model in the preceding display
by least squares and conduct inference about δ with bootstrap standard errors that
are compared to Student t critical values with 16 degrees of freedom. Their preferred
bootstrap first draws states with replacement and then draws individuals within
those states with replacement. This type of inference accounts for autocorrelation
within individuals over time but generally requires the number of clusters to be
infinite for the asymptotics. This bootstrap also does not account for potential
dependence within states.

I replicate the findings of Garthwaite et al. (2014) in the top panel of Table 3.
They estimate the causal effect of the TennCare disenrollment on the probability of
(1) having public health insurance, (2) being employed, and (3)-(6) being employed
for a certain number of hours per week. I show their bootstrap standard errors in
parentheses but report one-sided p-values in brackets instead of their two-sided p-
values. In (1) the alternative is a negative effect, for (2)-(6) the alternative is positive.
Garthwaite et al. find a highly significant 4.6 percentage point decrease for (1) and
mostly significant positive effects for (2)-(6). They document an approximately 2.5
percentage point increase in employment and find the same effect if the outcome is
restricted to individuals working more than 20 hours or more than 35 hours a week.
All three effects are significant at the 5% level. The inference in Garthwaite et al.
shows no significant effect for individuals working less than 20 hours or 20-35 hours.

I now apply the rearrangement test. I view each state over time as a single cluster
and run 17 separate least squares regressions of the form

Yt,k = θ0It + ζk + Ut,k, 1 ⩽ k ⩽ 16,
Yt,k = θ1It + ζk + Ut,k, k = 17,

to obtain θ̂0,k (1 ⩽ k ⩽ 16) from each of the Southern states except Tennessee
and θ̂1 from Tennessee (k = 17). Note that the ζk are now the constant terms in
each regression. To perform the test, I start with ϱ = 0 and increase ϱ by .001
in Algorithm 3.5 as long as the null hypothesis H0 : δ = 0 is still rejected. The
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bottom panel of Table 3 shows the largest feasible value of ϱ for outcomes (1)-(6).
At the 10% level, the result in (1) survives an up to 2.3312 ≈ 5.4 times larger
variance in the estimate from Tennessee relative to the second-least variable control
cluster estimate. The result in (2) holds if Tennessee has a 1.3392 ≈ 1.8 times larger
variance and (4) holds even with an up to 1.4862 ≈ 2.2 times larger variance. At
the 5% level, these three results remain valid with smaller ϱ but the result in (2)
only survives if the estimate from Tennessee is at most slightly less variable than
the second-least variable control cluster estimate. The results in (3) and (5) confirm
findings in Garthwaite et al. (2014) in that they are not significant at any level and
for any value of ϱ.

A noteworthy situation occurs in (6), where the rearrangement test disagrees
sharply with the significant effect found by Garthwaite et al. (2014). The rearrange-
ment test finds no effect at any significance level and for any ϱ. In contrast, the
effects in (2) and (6) are not only essentially identical but also have identical standard
errors. (The p-values differ slightly because of rounding.) This also illustrates that
the rearrangement test differs fundamentally from inference based on t statistics
and resampling.

In sum, the rearrangement test robustly confirms—with one exception—the results
of Garthwaite et al. (2014). There is statistical evidence of increased employment
concentrated among individuals working at least 20 hours per week even if one
accounts for arbitrary dependence within states and over time. The results hold up
to substantial heterogeneity across clusters even if the number of clusters is treated
as fixed for the analysis. It is also worth noting that ϱ only restricts heterogeneity in
one direction. All of the results presented here are robust to arbitrary heterogeneity
in any other direction and to Tennessee being infinitely more variable than the least
variable control cluster. □

5. Conclusion

I introduce a generic method for inference about a scalar parameter in research
designs with a finite number of large, heterogeneous clusters where only a single
cluster received treatment. This situation is commonplace in difference-in-differences
estimation but the test developed here applies more generally. I show that the
test asymptotically controls size and has power in a setting where the number of
observations within each cluster is large but the number of clusters is fixed. The
test combines independent, approximately Gaussian parameter estimates from each
cluster with a weighting scheme and a rearrangement procedure to obtain its critical
values. The weights needed for most empirically relevant situations are tabulated
in the paper. The critical values are computationally simple and do not require
simulation or resampling. The test is highly robust to situations where some clusters
are much more variable than others. Examples and an empirical application are
provided.

Appendix A. Proofs

Proof of Theorem 2.1. Choose any λ ∈ Λ and w ∈ (0, 1). Let S(X,w) = S =
(S1, . . . , Sq+2). By continuity, we have T (S) = T (S▽) if and only if S1 + S2 =
S(q+2) + S(q+1) and

∑q
k=1 Sk+2 =

∑q
k=1 S(k) almost surely. Conclude that

Eλ,0ϕ(X,w) = Pλ,0

(
min{(1+w)(X1−X̄0), (1−w)(X1−X̄0)} > max

k
(X0,k−X̄0)

)
.
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Because of the centering, we can without loss of generality assume µ0 = 0. Define
X1,1 = (1 + w)X1 and X1,2 = (1 − w)X1. Use monotonicity of maximum and
minimum to express the right-hand side of the preceding display as Pλ,0(min{X1,1−
wX̄0, X1,2 +wX̄0} > X0,(q)). Let s2 =

∑q
k=1 σ

2
k and denote by ϕ̃(X,w) an infeasible

version of the test function ϕ(X,w) that replaces X̄0 by µ0. The inequality |1{a >
b} − 1{c > b}| ⩽ 1{|a− b| ⩽ |a− c|} for a, b, c ∈ R and the triangle inequality then
imply that for every t > 0

sup
λ∈Λ

∣∣Eλ,0ϕ(X,w)1{|X̄0| ⩽ st} − Eλ,0ϕ̃(X,w)1{|X̄0| ⩽ st}
∣∣

cannot exceed

sup
λ∈Λ

Pλ,0
(
|X1,(1) −X0,(q)| ⩽ |min{X1,1 − wX̄0, X1,2 + wX̄0} −X1,(1)|, |X̄0| ⩽ st

)
.

By monotonicity, this is at most supλ∈Λ Pλ,0(|X1,(1) − X0,(q)| ⩽ wst). Note that
X1,(1) is negatively skewed and X0,(q) positively skewed. Because X1,(1) and X0,(q)
are independent, Pλ,0(|X1,(1) −X0,(q)| ⩽ wst) is largest when X1,(1) has the least
skew. This happens at σ = 0 and implies

sup
λ∈Λ

Pλ,0(|X1,(1) −X0,(q)| ⩽ wst) = sup
λ∈Λ

Pλ,0(|X0,(q)| ⩽ wst).

The probability on the right is the supremum of
∏q

k=1 Φ(wst/σk)−
∏q

k=1 Φ(−wst/σk)
over λ ∈ Λ. Because s/σk is decreasing in σk, the entire expression must be
decreasing in σk and the supremum in the preceding display is therefore attained
at σ1 = · · · = σq−1 = σ

¯
and σq = 0. Conclude that supλ∈Λ Pλ,0(|X1,(1) −X0,(q)| ⩽

wst) ⩽ Φ(
√
q − 1wt)q−1. Because∣∣Eλ,0ϕ(X,w)1{|X̄0| > st} − Eλ,0ϕ̃(X,w)1{|X̄0| > st}

∣∣ ⩽ P (|X̄0| > st) = 2Φ(−qt)

and because all bounds so far are valid for every t, it follows that

sup
λ∈Λ

∣∣Eλ,0ϕ(X,w) − Eλ,0ϕ̃(X,w)
∣∣ ⩽ min

t>0

(
Φ
(√

q − 1wt
)q−1 + 2Φ(−qt)

)
.

Now consider Eλ,0ϕ̃(X,w) = Pλ,0(X1,(1) > X0,(q)), which can be expressed as

P
(
(1 − w)X1 > X0,(q), X1 > 0

)
+ P

(
(1 + w)X1 > X0,(q), X1 < 0

)
.

The second term on the right is at most P (X0,(q) < 0, X1 < 0) = Φ(0)q+1 = 2−q−1.
Use independence to write the first term of the preceding display as∫ ∞

0

q∏
k=1

Φ
(

(1 − w)σy
σk

)
φ(y)dy ⩽

∫ ∞

0
Φ
(

(1 − w)σ̄y
σ
¯

)q−1

φ(y)dy,

where the inequality follows because the integrand is increasing in σ, decreasing in
σk, and at most one σk can be arbitrarily close to zero. Combine the bounds on
Eλ,0ϕ̃(X,w) and Eλ,0ϕ(X,w) − Eλ,0ϕ̃(X,w) to obtain the bound ξq.

Now consider the alternative. We still have

Eλ,δϕ(X,w) = Pλ,δ

(
min{(1+w)(X1−X̄0), (1−w)(X1−X̄0)} > max

k
(X0,k−X̄0)

)
.

Because 1{min{(1+w)(X1−X̄0), (1−w)(X1−X̄0)} > maxk(X0,k−X̄0)} → 1 almost
surely as δ → ∞ for w ∈ (0, 1), dominated convergence implies Eλ,δϕ(X,w) → 1.
At w = 1, min{2(X1 − X̄0), 0} − maxk(X0,k − X̄0) → −maxk(X0,k − X̄0) almost
surely as δ → ∞. This limit has a continuous distribution function at 0. At
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w = 1, the Slutsky lemma implies that the preceding display converges to P (0 >
maxk(X0,k − X̄0)) = P (X̄0 > maxk X0,k) = 0, as required. □

Proof of Proposition 2.2. Let At =
⋂q

k=1{−t < X0,k ⩽ t} for some t > 0. As
above, assume without loss of generality that µ0 = 0 and recall that Eλ,δϕ(X,w) =
Pλ,δ(min{X1,1 − wX̄0, X1,2 + wX̄0} > X0,(q)). For every fixed t, this is strictly
larger than
P
(
min{X1,1 −wX̄0, X1,2 + wX̄0} > X0,(q), At

)
⩾ P

(
min{X1,1, X1,2} −wt > t,At

)
because X0,(q) ⩽ t and |X̄0| ⩽ t. By independence and because t > 0, the display
can be expressed as

Pλ,δ

(
X1 >

1 + w

1 − w
t

)
Pλ(At) = Pλ,δ

(
X1 >

1 + w

1 − w
t

) q∏
k=1

(
Φ(t/σk) − Φ(−t/σk)

)
.

By symmetry, this simplifies to

Φ
((

1 + w

1 − w
t− δ

)
/σ

)
2q

q∏
k=1

(
Φ(t/σk) − 0.5

)
and, because t was arbitrary, it must be true that

Eλ,δϕ(X,w) ⩾ 2q sup
t⩾0

Φ
((

δ − 1 + w

1 − w
t

)
/σ

)
q∏

k=1

(
Φ(t/σk) − 0.5

)
.

Replace t by tσ to obtain the bound in the proposition.
The quantity inside the supremum is continuous on [0,∞], equals zero at t = 0

and t = ∞, and is strictly positive on t ∈ (0, 1). The space [0,∞] with the order
topology is compact and the supremum must therefore be attained on t ∈ (0,∞) to
not contradict the extreme value theorem. The supremum in the preceding display
is therefore a maximum over t ∈ (0,∞) for every fixed δ ∈ [0,∞) and the maximized
function is a continuous function of δ on [0,∞] by the Berge maximum theorem. As
δ → ∞, the supremum is attained at t = ∞ and the right-hand side of the display
equals one. □

Proof of Proposition 2.3. Let S(Xn, w) = Sn = (S1,n, . . . , Sq+2,n). We cannot have
min{S1,n, S2,n} < max{S3,n, . . . , Sq+2,n}

and T (Sn) = T (S▽
n ) at the same time. Moreover, the reverse inequality implies

T (Sn) = T (S▽
n ). Conclude that

Eϕ(Xn, w) = P
(
min{S1,n, S2,n} > max{S3,n, . . . , Sq+2,n}

)
+ P

(
T (Sn) = T (S▽

n ),min{S1,n, S2,n} = max{S3,n, . . . , Sq+2,n}
)
.

By the assumed weak convergence and the continuous mapping theorem, we have
S(Xn, w)⇝ S(X,w) = (S1, . . . , Sq+2). Use the continuous mapping theorem again
to deduce

min{S1,n, S2,n} − max{S3,n, . . . , Sq+2,n}⇝ min{S1, S2} − max{S3, . . . , Sq+2}.
The right-hand side can be expressed as
hX0,1,...,X0,q (X1) := min{(1 + w)(X1 − X̄0), (1 − w)(X1 − X̄0)} − max

k
(X0,k − X̄0),

where x 7→ hX0,1,...,X0,q(x) is strictly increasing and continuous for almost every
realization of X0,1, . . . , X0,q and therefore has a strictly increasing and continuous
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inverse h−1
X0,1,...,X0,q

almost everywhere. Independence implies that the distribution
function of the preceding display equals x 7→ EΦ(h−1

X0,1,...,X0,q
(x)/σ), which is

continuous by dominated convergence. Conclude that hX0,1,...,X0,q (X1) must have a
continuous distribution function at 0 so that

P (min{S1,n, S2,n} − max{S3,n, . . . , Sq+2,n} > 0) → Eϕ(X,w)
and P (min{S1,n, S2,n} − max{S3,n, . . . , Sq+2,n} = 0) → 0. Combine these two
results to obtain Eϕ(Xn, w) → Eϕ(X,w) + 0, as desired. □

Proof of Theorem 3.2. Let X1,n =
√
n(θ̂1 − θ1) and X0,k,n =

√
n(θ̂0,k − θ0) for 1 ⩽

k ⩽ q. By assumption, Xn = (X1,n, X0,1,n, . . . , X0,q,n)⇝ X. Because x 7→ ϕα(x) is
invariant to multiplication of x with positive constants, we have ϕα(θ̂n) = ϕα(Xn) if
θ1 = θ0. By Proposition 2.3 and Theorem 2.1, this implies Eϕα(θ̂n) → Eϕα(X) ⩽ α
under the null hypothesis.

Suppose θ1 = θ0 + δ/
√
n. Let x 7→ Sα(x) = S(x,wq(α, ϱ)) and ∆ = (δ1{k =

1})1⩽k⩽q+1. By the assumed continuity and the Slutsky lemma, we have Xn +
∆ θ⇝ X+∆. Because

√
nSα(θ̂n) = Sα(Xn+∆) and ϕα is invariant to scaling of S by

positive constants, it follows from Proposition 2.3 that Eϕα(θ̂n) = Eϕα(Xn + ∆) →
Eϕα(X + ∆), to which the lower bound developed in Proposition 2.2 can be applied.

Now suppose δ = θ1−θ0 > 0. Let X̄0,n = q−1∑q
k=1 X0,k,n. Because Xn/

√
n⇝ 0,

the continuous mapping theorem implies that
min{(1 + w)(X1,n + δ − X̄0,n), (1 − w)(X1,n + δ − X̄0,n)} − max

k
(X0,k,n − X̄0,n)

divided by
√
n converges weakly to min{(1 + w)δ, (1 − w)δ}. Because zero is a

continuity point of the distribution of this degenerate variable unless δ = 0, conclude
that Eϕα(θ̂n) → 1 by the same arguments as in Propsition 2.3. □
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S loczyński, T. (2018). A general weighted average representation of the ordinary
and two-stage least squares estimands. Working paper, Department of Economics,
Brandeis University.
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