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Abstract. I introduce a simple permutation procedure to test conventional
(non-sharp) hypotheses about the effect of a binary treatment in the presence
of a finite number of large, heterogeneous clusters when the treatment effect
is identified by comparisons across clusters. The procedure asymptotically
controls size by applying a level-adjusted permutation test to a suitable statistic.
The adjusted permutation test is easy to implement in practice and performs
well at conventional levels of significance with at least four treated clusters
and a similar number of control clusters. It is particularly robust to situations
where some clusters are much more variable than others.
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1. Introduction

It has become widespread practice in economics to conduct inference that is robust
to within-cluster dependence. Typical examples of clusters are states, counties,
cities, schools, firms, or stretches of time. Units within the same cluster are likely
to influence one another or are influenced by the same external shocks. Several
analytical and computationally intensive procedures such as the bootstrap are
available to account for the presence of data clusters. Most of these procedures
achieve consistency by requiring the number of clusters to go to infinity. Numerical
evidence by Bertrand, Duflo, and Mullainathan (2004), MacKinnon and Webb
(2017), and others suggests that this type of asymptotics often translates into
heavily distorted inference in empirically relevant situations when the number of
clusters is small or the clusters are heterogenous. In both situations, the overall
finding is that true null hypotheses are rejected far too often. In this paper, I
introduce an adjusted permutation procedure that is able to asymptotically control
the size of tests about the effect of a binary treatment in the presence of finitely many
large and heterogeneous clusters. The procedure applies to difference-in-differences
estimation and other situations where treatment occurs in some but not all clusters
and the treatment effect of interest is identified by between-cluster comparisons.

The main theoretical insight of this paper is that classical permutation inference
can be adjusted to test the null hypothesis of equality of means of two finite samples
of mutually independent but arbitrarily heterogeneous normal variables. This runs
counter to classical permutation testing (Hoeffding, 1952), where the data under
the null are presumed to be exchangeable. The adjustment corrects the significance
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level of the test downwards to account for heterogeneity. I prove that this is possible
for empirically relevant levels of significance if both samples consist of more than
three observations. The corrections needed for all standard levels of significance are
tabulated in the paper. I also show that if a random vector of interest converges
weakly to multivariate normal with diagonal covariance matrix, then permutation
inference remains approximately valid for that vector. To exploit this result in a
cluster context, I construct asymptotically normal statistics from each cluster and
then apply adjusted permutation inference to the collection of these statistics. The
resulting permutation test is consistent against all fixed alternatives to the null,
powerful against local alternatives, and is free of user-chosen parameters.

The strategy of using cluster-level estimates as the basis for a test goes back at
least to Fama and MacBeth (1973), who without formal justification run t tests
on regression coefficients obtained from year-by-year cross-sectional regressions.
Their approach is generalized and formalized by Ibragimov and Müller (2010, 2016),
who construct t statistics from cluster-level estimates and show that for certain
combinations of numbers of clusters and significance levels these statistics can be
compared to Student t critical values. The Ibragimov-Müller test and the adjusted
permutation test complement one another because they both rely on finite-sample
inference with heterogeneous normal variables but apply to non-nested combinations
of numbers of clusters and significance levels. The empirical example in this paper
features a practically relevant situation where the Ibragimov-Müller test does not
apply but the adjusted permutation test does. If both tests apply, the Monte Carlo
results in this paper indicate that neither test dominates the other in terms of power
but the adjusted permutation test has clear advantages if the underlying data are
heavy tailed.

Several other papers show that inference with a fixed number of clusters is possible
under a variety of conditions: Canay, Romano, and Shaikh (2017) permute the
signs of cluster-level statistics under symmetry assumptions. This approach requires
the parameter of interest to be identified within each cluster and clusters therefore
have to be paired in an ad-hoc manner for difference-in-differences estimation. This
pairing has a substantial impact on the test decision and requires a large number
of choices on the part of the researcher. Bester, Conley, and Hansen (2011) use
standard cluster-robust covariance matrix estimators but adjust critical values under
homogeneity assumptions on the clusters. Canay, Santos, and Shaikh (2021) show
that certain cluster-robust versions of the wild bootstrap can be valid under strong
homogeneity assumptions with a fixed number of clusters. In sharp contrast, the
test developed here does not require pairing clusters or any other decisions on the
part of the researcher and applies even if the clusters are arbitrarily heterogeneous.

I will use the following notation: 1{·} is the indicator function, min{a, b} = a∧ b,
and cardinality of a set A is |A|. The smallest integer larger than a is ⌈a⌉ and the
largest integer smaller than a is ⌊a⌋. Limits are as n→ ∞ unless noted otherwise.

All proofs can be found in the online appendix.

2. Permutation inference with heterogenous symmetric variables

In this section I show that classical permutation inference can be adjusted to test
for the equality of location of two finite samples of independent symmetric variables
with heterogeneous scales. The discussion focuses on heterogeneous normal variables
but several of the results apply more generally.



PERMUTATION INFERENCE WITH CLUSTERS 3

Suppose the random vector X = (X1, . . . , Xq) ∈ Rq has entries Xk = µ1 + σkZk

for 1 ⩽ k ⩽ q1 and Xk = µ0 + σkZk for q1 + 1 ⩽ k ⩽ q1 + q0 = q, where the
Z1, . . . , Zq are iid symmetric variables. The σk are not known and no estimates are
assumed to be available. The number of variables q is taken as fixed throughout
this paper. The goal is to construct an α-level permutation test of the hypothesis
H0 : µ1 = µ0. This is a two-sample problem with “treatment” sample X1, . . . , Xq1

and “control” sample Xq1+1, . . . , Xq. The test statistic T considered here is the
comparison of means

(x1, . . . , xq) 7→ T (x) = 1
q1

q1∑
k=1

xk − 1
q0

q∑
k=q1+1

xk. (2.1)

No standardization is needed.
Let Sq be the group of permutations of the set {1, . . . , q}. For g ∈ Sq, denote

by g(k) the value the permutation g assigns to k for 1 ⩽ k ⩽ q. The “group action”
on X in Sq is the relabeling of the indices gX = (Xg(1), . . . , Xg(q)). A permutation
test derives its critical values from the permutation statistics T (gX). Because
x 7→ T (x) is invariant to the ordering of the first q1 and last q0 entries of x, it
suffices to compute the T (gX) for the set of group actions with unique combinations
of g(1), . . . , g(q1) and g(q1 + 1), . . . , g(q). One way of representing this set is

G =
{
g ∈ Sq : g(1) < · · · < g(q1) and g(q1 + 1) < · · · < g(q)

}
. (2.2)

Denote by T (1)(X,G) ⩽ T (2)(X,G) ⩽ · · · ⩽ T (|G|)(X,G) the ordered values of
T (gX) as g varies over G and define critical values

p 7→ T p(X,G) = T (⌈(1−p)|G|⌉)(X,G). (2.3)

Classical permutation inference operates under the null hypothesis that X has
the same distribution as gX for all g ∈ Sq. In the present context this would be
equivalent to assuming that µ1 = µ0 and that all σk are identical under the null. An
argument due to Hoeffding (1952) would then show that Tα(X,G) could be used as
the critical value for an α-level test against the alternative H1 : µ1 > µ0. If the null
hypothesis is weakened to H0 : µ1 = µ0 without restrictions on σk, a natural question
to ask if there exists any order statistic j 7→ T (j)(X,G), ⌈(1−α)|G|⌉ ⩽ j < |G|, that
can be used as a critical value for an α-level test even if the classical permutation
hypothesis X ∼ gX for all g ∈ Sq fails. As I will discuss now, the answer to this
question is affirmative for empirically relevant choices of α if q1 and q0 are larger
than 3.

Because T (X) ∈ {T (gX) : g ∈ G}, it is always true that T (X) ⩽ T (|G|)(X,G).
The largest non-trivial critical value from {T (gX) : g ∈ G} is therefore the second
largest order statistic T (|G|−1)(X,G). The following theorem shows that the prob-
ability that T (X) exceeds T (|G|−1)(X,G) is necessarily small under H0 : µ1 = µ0.
In fact, this probability is so small that T (X) > T (|G|−1)(X,G) is well below any
standard choice of α for most values of q1 and q0. By monotonicity, the existence of
a j such that P (T (X) > T (j)(X,G)) ⩽ α is then guaranteed.

Theorem 2.1 (Size for heterogeneous symmetric variables). Let X = (X1, . . . , Xq)
with Xk = µ + σkZk, 1 ⩽ k ⩽ q, where σ1, . . . , σq > 0 and the Z1, . . . , Zq are iid
copies of a continuous random variable Z. If Z and −Z have the same distribution,
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then
sup

µ∈R,σ1,...,σq>0
P
(
T (X) > T (|G|−1)(X,G)

)
= 1

2q1∧q0
.

A byproduct of the theorem is a bound for the case where the scales σ1, . . . , σq
are replaced by positive random variables independent of Z1, . . . , Zq. The Xk are
then called “scale mixtures” of a symmetric variable Z. The following corollary is
immediately obtained from Theorem 2.1 by conditioning on a given set of random
scales.1

Corollary 2.2 (Size for symmetric scale mixtures). Suppose X = (X1, . . . , Xq) with
Xk = µ + SkZk, 1 ⩽ k ⩽ q, where the Z1, . . . , Zq are iid copies of a continuous
random variable Z and (S1, . . . , Sq) is a possibly dependent random vector indepen-
dent of Z1, . . . , Zq with P (Sk > 0) = 1 for 1 ⩽ k ⩽ q. If Z and −Z have the same
distribution, then supµ∈R P (T (X) > T (|G|−1)(X,G)) ⩽ 1/2q1∧q0 .

Theorem 2.1 shows that a test with critical value T (|G|−1)(X,G) has size 1/2q1∧q0 =
0.0625, 0.0313, 0.0156, 0.0078, 0.0039 as q1 ∧ q0 increases from 4 to 8. Consequently,
a 10%-level permutation test that relies only on symmetry is available with q1 and
q0 as small as 4. One can perform a 5%-level test with q1 ∧ q0 ⩾ 5, a 5%-level
two-sided test (see the discussion below (2.5) ahead) with q1 ∧ q0 ⩾ 6, a 1%-level
test with q1 ∧ q0 ⩾ 7, and a 1%-level two-sided test with q1 ∧ q0 ⩾ 8.

More generally, Theorem 2.1 implies that for many combinations of q1, q0,
and α there exist p ∈ (0, 1) such that ⌈(1 − α)|G|⌉ ⩽ ⌈(1 − p)|G|⌉ < |G| and
P (T (X) > T p(X,G)) ⩽ α. The largest such value of p maximizes power while still
controlling the size of the test. Finding this p is theoretically and computationally
challenging. However, computation can be simplified if Z is restricted to a single
distribution. For normal distributions, the best possible p is

ᾱ = sup
{
p ∈ [0, 1) : sup

µ∈R,σ1,...,σq>0
P
(
T (X) > T p(X,G)

)
⩽ α,

X ∼ N
(
µ,diag(σ2

1 , . . . , σ
2
q )
)}
, (2.4)

where I suppress the dependence on q1 and q0 to prevent notational clutter. By
construction, ᾱ controls the size of the permutation test not only for arbitrarily
heterogeneous normal variables but also for the entire class of scale mixtures of
normals. This class includes all Student t and Laplace distributions, as well as
many other standard distributions (see, e.g., Gneiting, 1997). Moreover, because
the critical value is from a permutation distribution, the test also controls size for
all exchangeable distributions. The remainder of the paper therefore focuses on this
ᾱ and heterogeneous normal X but other choices of distributions are possible.

A convenient feature of ᾱ is that it does not depend on the data and can therefore
be tabulated. To this end, I use a location-scale invariance argument to reduce
the inner supremum in (2.4) to a supremum over (0, 1]q, simulate P over large
random grids on (0, 1]q, and compute ᾱ by iteratively searching over these grids.
(See Online Appendix E for details.) The search is not exhaustive and does not
guarantee that the target quantity in (2.4) is found. However, in experiments this

1A referee points out that Székely (2006) studies one-sample Student t-tests for similar classes of
distributions. Székely does not deal with permutation inference and uses a fundamentally different
proof technique but the results are also powers of two.
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Table 1. Values for ᾱ as defined in (2.4) as a function of q1, q0, and α.

q0
α q1 4 5 6 7 8 9 10 11 12

.10 4 .0428
5 .0317 .0595
6 .0238 .0432 .0660
7 .0181 .0340 .0500 .0760
8 .0161 .0303 .0493 .0600 .0813
9 .0153 .0246 .0400 .0580 .0740 .0900
10 .0129 .0220 .0366 .0500 .0700 .0826 .0926
11 .0153 .0193 .0313 .0420 .0606 .0746 .0853 .0953
12 .0106 .0193 .0260 .0420 .0580 .0673 .0800 .0926 .0953

.05 5 .0158
6 .0108 .0227
7 .0088 .0200 .0253
8 .0062 .0120 .0233 .0306
9 .0113 .0120 .0213 .0300 .0393
10 .0100 .0113 .0166 .0286 .0340 .0420
11 .0100 .0080 .0153 .0240 .0313 .0393 .0440
12 .0073 .0080 .0153 .0213 .0266 .0366 .0440 .0491

.025 6 .0043
7 .0040 .0086
8 .0026 .0086 .0153
9 .0026 .0066 .0100 .0146
10 .0026 .0046 .0093 .0146 .0166
11 .0020 .0033 .0080 .0106 .0166 .0180
12 .0020 .0033 .0073 .0093 .0120 .0173 .0206

.01 7 .0026
8 .0013 .0026
9 .0013 .0020 .0033
10 .0013 .0020 .0033 .0040
11 .0013 .0020 .0033 .0040 .0066
12 .0013 .0013 .0026 .0033 .0053 .0066

.005 8 ∗
9 ∗ .0013
10 ∗ .0013 .0013
11 ∗ .0006 .0013 .0020
12 ∗ ∗ .0013 .0020 .0033

Note: ∗ means T ᾱ(X,G) should be the second largest order statistic T (|G|−1)(X,G).
More values are available at https://hgmn.github.io/ap.

method consistently replicated the theoretical result in Theorem 2.1 up to a small
approximation error, which indicates—but does not unequivocally establish—that
this approximation of ᾱ is reliable.

Table 1 lists ᾱ for common choices of α as a function of q1 and q0. As can be
seen, the adjustment needed to make inference robust to variance heterogeneity is
substantial if q1 ∧ q0 is very small but disappears quickly as q1 ∧ q0 increases. For
example, for q1 = 4 = q0 a robust 10%-level test requires using the 95.62% quantile
of the unadjusted test but for q1 = 9 = q0 the 91% quantile is already sufficient for
a robust 10%-level test. For larger numbers of variables the need for adjustment

https://hgmn.github.io/ap/
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nearly disappears at conventional levels of significance. This is also confirmed by
results in Hagemann (2019), who shows that unadjusted permutation inference
in this context with the statistic T (X) is consistent if the number of treated and
control units grows in a balanced manner.

The test decision is now simple. For q1 ∧ q0 > 3, choose ᾱ for a feasible α from
Table 1 to ensure P (T (X) > T ᾱ(X,G)) ⩽ α under H0 : µ1 = µ0. The existence of
such an ᾱ for the comparison-of-means test statistic T is guaranteed by Theorem 2.1.
For an α-level test of the null hypothesis H0 : µ1 = µ0, reject in favor of the
alternative H1 : µ1 > µ0 if

T (X) > T ᾱ(X,G). (2.5)
For a one-sided test of level α against µ1 < µ0, reject if T (−X) > T ᾱ(−X,G)
or, equivalently, T (X) < T (⌊|G|ᾱ⌋)(X,G). For a two-sided test of level 2α against
µ1 ̸= µ0, reject if T (X) > T ᾱ(X,G) or T (−X) > T ᾱ(−X,G). Test decisions can
also be equivalently made with the p-value of the unadjusted test

p̂(X,G) = inf{p ∈ (0, 1) : T (X) > T p(X,G)} = 1
|G|

∑
g∈G

1{T (gX) ⩾ T (X)} (2.6)

because T (X) > T p(X,G) if and only if p̂(X,G) ⩽ p for every p ∈ (0, 1). A
p-value for a two-sided test can be defined as 2(p̂(X,G)∧ p̂(−X,G)). Reject the null
hypothesis if the p-value does not exceed ᾱ from Table 1 to perform an α-level test.

Online Appendix A contains additional results on power, stochastic approximation
of G, and large sample approximation of X. The next section applies Theorem 2.1
to situations where X is the distributional limit of cluster-level statistics.

3. Permutation inference with heterogenous clusters

In this section, I establish large sample results for an adjusted permutation test
with finitely many clusters under a single high-level condition. I then outline how
these results can be applied in empirical practice.

Suppose data from q large clusters (e.g., counties, regions, schools, firms, or
stretches of time) are available. Observations are independent across clusters
but dependent within clusters. An intervention took place during which clusters
1 ⩽ k ⩽ q1 received treatment and clusters q1 + 1 ⩽ k ⩽ q did not. The quantity
of interest is a treatment effect or an object related to a treatment effect that can
be represented by a scalar parameter δ. Because entire clusters receive treatment,
this parameter is only identified up to a location shift θ0 within a treated cluster.
Hence, only the left-hand side of

θ1 = θ0 + δ

can be identified from such a cluster. If the clusters have similar characteristics,
then θ0 can be identified from an untreated cluster. Comparing the two clusters
identifies δ.

The identification strategy outlined in the preceding paragraph is the basis
for differences-in-differences estimation—arguably the most popular identification
strategy in economics today—and a variety of other models. The purpose of this
section is to use the results from Section 2 to develop a permutation test of the
conventional (non-sharp) hypothesis

H0 : δ = 0,
or, equivalently, H0 : θ1 = θ0. The idea is to obtain independent estimates
θ̂n,1, . . . , θ̂n,q1 of θ1 and independent estimates θ̂n,q1+1, . . . , θ̂n,q of θ0 so that θ̂n =
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(θ̂n,1, . . . , θ̂n,q) is approximately multivariate normal with diagonal covariance matrix.
The following example outlines a simple situation where this is possible.

Example 3.1 (Difference in differences). Consider the regression model
Yt,k = θ0It + δItDk + β′

kXt,k + ζk + Ut,k, (3.1)
where k indexes individual units, t indexes time, It = 1{t > n0,k} indicates time
periods after an intervention at a known time n0,k, the dummy Dk indicates whether
unit k eventually received treatment, and the ζk are individual fixed effects. Provided
Ut,k has conditional mean zero and the covariates Xt,k vary before or after n0,k, the
data identify θ1 = θ0 + δ in a treated cluster and θ0 in an untreated cluster. View
each cluster as a separate regression and rewrite (3.1) as

Yt,k =
{
θ1It + β′

kXt,k + ζk + Ut,k, 1 ⩽ k ⩽ q1,
θ0It + β′

kXt,k + ζk + Ut,k, q1 < k ⩽ q
(3.2)

and use the least squares estimates θ̂n,k of θ1 and θ0 as θ̂n = (θ̂n,1, . . . , θ̂n,q). □

The cluster-level statistics θ̂n can be combined with the results in the previous
section to perform a consistent permutation test as the sample size n grows large.
The test is not limited to the θ̂n constructed in the preceding example. Instead, the
key high-level condition is that a centered and scaled version of some estimate θ̂n
converges to a q-dimensional standard normal distribution,

√
n

(
θ̂n,1 − θ1
σ1(θ1) , . . . ,

θ̂n,q1 − θ1
σq1(θ1) ,

θ̂n,q1+1 − θ0
σq1+1(θ0) , . . . ,

θ̂n,q − θ0
σq(θ0)

)
⇝ N(0, Iq). (3.3)

The σ1, . . . , σq may depend on θ1 or θ0 but are not presumed to be known or
estimable by the researcher. This is an important feature of the test because
consistent covariance matrix estimation would require knowledge of an explicit
ordering of the dependence structure within each cluster. While ordering the data is
straightforward for time-dependent data, it may be difficult or impossible to infer or
credibly assume an ordering of the data within villages or schools. In contrast, (3.3)
can be established under weak dependence assumptions where it is only presumed
that there exists a possibly unknown ordering for which the dependence decays at
a certain rate. El Machkouri, Volný, and Wu (2013) present easy-to-use moment
bounds and limit theorems for this situation; see also Bester et al. (2011) for further
results.

I now show that under the joint convergence (3.3) a permutation test based
on comparison of means of θ̂n,1, . . . , θ̂n,q1 and θ̂n,q1+1, . . . , θ̂n,q can be adjusted to
be asymptotically of level α with a fixed number of clusters. This is possible for
q1 ∧ q0 > 3 if ᾱ in Table 1 is available at the desired significance level α. In that
case, the test has power against fixed alternatives θ1 = θ0 + δ with δ > 0 and local
alternatives θ1 = θ0 + δ/

√
n converging to the null. In the latter situation, θ0 is

fixed and θ1 implicitly depends on n. The convergence in (3.3) is then no longer
pointwise in θ = (θ1, θ0) but a statement about the sequence θn = (θ0 + δ/

√
n, θ0).

As before, the test can be made two-sided to have power against fixed and local
alternatives from either direction. Let x 7→ Φ̃θ0(x) =

∏
1⩽k⩽q0

Φ(x/σk+q1(θ0)).

Theorem 3.2 (Consistency and local power). Suppose (3.3) holds. If θ1 = θ0, then

lim
n→∞

Pθ

(
T (θ̂n) > T ᾱ(θ̂n,G)

)
⩽ α.
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Let ᾱ ⩾ 1/|G|. If θ1 = θ0 + δ with δ > 0, then Pθ(T (θ̂n) > T ᾱ(θ̂n,G)) → 1. If
θ1 = θ0 + δ/

√
n and the σ1, . . . , σq are continuous and positive at θ0, then

lim
n→∞

Pθn

(
T (θ̂n) > T ᾱ(θ̂n,G)

)
⩾
∫ 1

0

∏
1⩽j⩽q1

Φ
(
δ − Φ̃−1

θ0
(t)

σj(θ0)

)
dt. (3.4)

Remarks. (i) Because T (θ̂n) > T ᾱ(θ̂n,G) if and only if T (a(θ̂n−θ01q)) > T ᾱ(a(θ̂n−
θ01q),G), where a > 0 and 1q is a q-vector of ones, the root-n rate in (3.3) and
in the theorem can be replaced by any other rate as long as the asymptotic nor-
mal distribution in (3.3) is still attained. The theorem therefore covers several
semiparametric or nonstandard estimators.

(ii) To test H0 : θ1 = θ0 + λ for a given λ, define Λ = (λ1{k ⩽ q1})1⩽k⩽q and
reject if T (θ̂n−Λ) > T ᾱ(θ̂n−Λ,G). Consistency follows from part (i) of this remark
and Theorem 3.2.

(iii) If evaluating all elements of G is too costly, the computational burden can
be reduced by working with a random sample Gm of m random draws from G. As
long as m→ ∞ and then n→ ∞, the theorem and parts (i)-(ii) of this remark also
hold for Gm with the exception of the local power bound if ᾱ|G| happens to be an
integer. In that case, the inequality (3.4) holds after subtracting P (p̂(Y,G) = ᾱ)/2
from its right-hand side, where Y = (σ1(θ0)Z1, . . . , σq(θ0)Zq), the Z1, . . . , Zq are
independent standard normal, and p̂ is defined in (2.6). This corrects for the
discreteness of the test. (See also Online Appendix A.) □

Example 3.3 (Difference in differences, cont.). Suppose there are n0,k pre-intervention
and n1,k post-intervention periods for unit k. The data from the nk = n0,k + n1,k
time periods available for unit k are the k-th cluster. Let n =

∑q
k=1 nk. In the

absence of covariates (i.e., βk ≡ 0), each least squares estimate in (3.2) satisfies

√
n(θ̂n,k − θ0) =

(
n

n1,k

)1/2
n
−1/2
1,k

nk∑
t=n0,k+1

Ut,k −
(

n

n0,k

)1/2
n
−1/2
0,k

n0,k∑
t=1

Ut,k

under H0. If the pre-intervention and post-intervention periods are long in the
sense that n/n0,k → c0,k ∈ (0,∞) and n/n1,k → c1,k ∈ (0,∞) for 1 ⩽ k ⩽ q, then
condition (3.3) already holds if n−1/2(

∑n0,k
t=1 Ut,k,

∑nk

t=n0,k+1 Ut,k) is independent
across 1 ⩽ k ⩽ q and has a non-degenerate normal limiting distribution for each
k. A large number of central limit theorems for time dependent data exist; see,
e.g., White (2001). Alternatively, if relatively few post-intervention periods are
available so that n1 =

∑q
k=1 n1,k satisfies n1/n0,k → 0 and n1/n1,k → c1,k ∈ (0,∞)

for 1 ⩽ k ⩽ q, the scale invariance of the test allows replacement of the
√
n in (3.3)

by √
n1. Then (3.3) holds if n−1/2

0,k
∑n0,k

t=1 Ut,k = OP (1) and n
−1/2
1,k

∑nk

t=n0,k+1 Ut,k

obeys a central limit theorem for 1 ⩽ k ⩽ q. This argument also applies if relatively
few pre-intervention periods are available with the roles of n0,k and n1,k reversed.
If the pre-intervention and post-intervention periods are short, Theorem 2.1 implies
that the permutation test can still be applied if (Ut,k)1⩽t⩽nk

is multivariate normal
for 1 ⩽ k ⩽ q.

The calculations in the preceding paragraph can be adjusted to include covariates.
Similar calculations also apply if each cluster is a collection of individual-level data
over time, although in that case more general limit theory is needed. See, e.g, Jenish
and Prucha (2009) and El Machkouri et al. (2013) for appropriate results.
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The model in (3.1) can be modified in several ways. For instance, cluster-specific
δk can be assumed instead of a fixed δ. The null hypothesis is then δk = 0 for
all k ⩽ q1 and the test has power against the alternative mink⩽q1 δk > 0 without
changes to estimation and inference. (Conversely, the parameter βk does not need to
vary across clusters for the results to go through.) The method discussed here can
also be applied in difference-in-difference designs with staggered adoption (see, e.g.,
de Chaisemartin and D’Haultfœille, 2020). However, as Roth, Sant’Anna, Bilinski,
and Poe (2022) point out, θ0 cannot vary by cluster, which rules out heterogeneous
trends in untreated potential outcomes across clusters. □

Online Appendix B provides more practical guidance for the implementation of
the adjusted permutation test and applies the test to several standard econometric
models.

4. Numerical results

This section studies the behavior of the adjusted permutation test and related
methods in a Monte Carlo experiment and in data from a randomized trial. The
discussion focuses on one-sided tests to the right but the results apply more gen-
erally. Online Appendix C contains additional numerical examples and empirical
applications.

Example 4.1 (Difference in differences, cont.). This example explores the behavior
of the adjusted permutation (AP hereafter) test, the Ibragimov and Müller (2016,
IM) test (see Online Appendix C for a description and more results), the Bester
et al. (2011, BCH) test, and a clustered wild bootstrap (Cameron, Gelbach, and
Miller, 2008, WCB) in a version of a Monte Carlo experiment in Conley and Taber
(2011). The BCH test estimates parameters by least squares in the pooled sample
and standardizes this estimate with the usual cluster-robust covariance matrix with
a degrees-of-freedom adjustment. The resulting statistic is compared to the 1 − α
quantile of t distribution with q − 1 degrees of freedom. BCH show that this test is
valid for certain ranges of q and α under regularity conditions if the distribution
of the covariates is very similar across clusters. The WCB takes the same statistic
but compares it to the bootstrap distribution of the statistic obtained from the
cluster-robust version of the wild bootstrap using the Rademacher distribution and
with the null imposed. This procedure is outlined in detail in Cameron et al. (2008).
It is valid with q → ∞ (Djogbenou, MacKinnon, and Nielsen, 2019) under mild
homogeneity conditions and valid for fixed q under strong homogeneity conditions
(Canay et al., 2021). The bootstrap here uses 199 repetitions.

The data generating process is the model in (3.1) specialized to

Yt,k = θ0It + δItDk + β1X1,t,k + β2X2,t,k + β3X3,t,k + ζk + Ut,k,

Ut,k = ρUt−1,k + Vt,k, X1,t,k = γItDk +Wt,k,

with θ0 = β1 = β2 = β3 = 1, ζk ≡ 1, ρ = 0.5, and γ = 0.8. As before, It = 1{t >
n0,k} is a post-intervention indicator and Dk is a treatment indicator. There are
n0,k ≡ 10 pre-intervention and n1,k ≡ 10 post-intervention periods, six clusters
received treatment, and six did not. I consider (X2,t,k, X3,t,k, Vt,k,Wt,k) ∼ N(0, σ2

kI)
for every 1 ⩽ k ⩽ q and t. The experiment varies δ ∈ {0, 1, 2, 3} and cluster
heterogeneity h as follows: for h ∈ {1, 3, 5, 7}, the last h clusters had σq−h+1 =
· · · = σq = 20 and the remaining q − h clusters had σ1 = · · · = σq−h = 1.
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Table 2. Rejection frequencies of the adjusted permutation test (AP) test,
Ibragimov-Müller (IM) test, Bester-Conley-Hansen (BCH) test, wild cluster
bootstrap (WCB), and an oracle version of the Canay-Romano-Shaikh (CRS)
test for increasing degrees of heterogeneity h in Example 4.1.

oracle oracle
AP IM BCH WCB CRS AP IM BCH WCB CRS

h δ = 0 (size) δ = 1 (power)
1 .0244 .0086 .0265 .0392 .0474 .2826 .1176 .2930 .3981 .4437
3 .0316 .0287 .0641 .0538 .0513 .1214 .0706 .1433 .1493 .1627
5 .0377 .0507 .0787 .0635 .0451 .0549 .0662 .1086 .0887 .0792
7 .0358 .0475 .0735 .0634 .0442 .0438 .0560 .0924 .0791 .0659

δ = 2 (power) δ = 3 (power)
1 .5541 .3142 .5631 .6234 .6036 .6227 .4797 .7001 .7054 .6799
3 .1896 .1263 .2375 .2435 .2410 .2445 .1900 .3448 .3420 .3056
5 .0728 .0889 .1566 .1325 .1192 .0982 .1188 .2214 .1897 .1565
7 .0533 .0707 .1306 .1110 .0908 .0715 .0915 .1715 .1488 .1168

Table 2 shows the rejection frequencies of the four tests outlined above under
the null and the alternative. Each entry was computed from 10,000 Monte Carlo
simulations and all methods were faced with the same data. As can be seen, all
tests were conservative when there was little heterogeneity (h = 1). However, the
BCH test and the WCB were no longer able to control size as the heterogeneity
increased. The over-rejection in both methods led to higher rejection frequencies
under the alternative, which therefore should not be viewed as evidence of their
power. The AP test rejected far more false nulls than the IM test when there
was little heterogeneity. As the heterogeneity increased, the IM test had a slight
advantage. The BCH test and the WCB performed well at h = 1. However, even
then there was little cost to using the AP test. It rejected nearly as many false
nulls as the BCH test and at most 11.55 percentage points fewer false nulls than
the WCB but was able to control size.

Several other methods for inference specifically designed for difference in differ-
ences such as Donald and Lang (2007) and Conley and Taber (2011) are available.
Here I focus only on methods that apply more broadly and that are valid with a
fixed number of clusters. The test of Canay et al. (2017, CRS) technically applies
here but requires matching each treated cluster with a control cluster. In the present
example, there are 6! = 720 potential matches and equally many potential tests. A
single match is enough to perform the test but different matches can lead to different
test outcomes. This arbitrariness can be unattractive in applied work because
the number of ways in which tests can be selected (and potentially combined) is
large. However, if a pilot study or pre-analysis plan prescribed the cluster pairs, the
(randomized) CRS test would be asymptotically similar and therefore provides a
useful benchmark for the AP test. To this end, Table 2 shows results of an oracle
version of the CRS test that presumes that a pre-analysis plan is in place. As can
be seen, the AP test compares well to the CRS test while completely avoiding the
issue that different cluster pairs can lead to different test results. □

Example 4.2 (Achievement awards; Angrist and Lavy 2009). In this example, I
reanalyze data from a randomized trial of Angrist and Lavy (2009) in Israel. Their
intervention provided cash rewards to low-achieving high school students if they
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Figure 1. Histogram of the permutation distribution of T (θ̂n) ≈ 0.132 (solid
black line) from Example 4.2 with 90%, 95%, and 99% critical values (dotted
lines).

performed well on the Bagrut certification exams for university admission in Israel.
I follow the analysis in Table 5 of Angrist and Lavy (2009) and focus on 32 schools
in the sample for which Bagrut rates from 2000 to 2002 are available. Of these
schools, 15 received treatment and 17 did not. Because 5 schools did not comply
with treatment, the estimates below should be interpreted as intent-to-treat effects.
Following Angrist and Lavy, I investigate the performance of girls in the June 2001
exams who were close to achieving Bagrut certification in the sense that they were
ranked above the median of the credit-weighted January 2001 scores of girls. The
sample also includes all girls who were above the median in 2000 and 2002. The
2948 girls who met these criteria had an above 50% chance of Bagrut certification.
I view each school over time as a cluster, which yields an average cluster size of
approximately 92 students.

Angrist and Lavy (2009) report a large number of specifications. I consider a
version of their fixed-effects model and estimate Yi,t,k = θ0It + δDkIt +ηJt +βtopi +
ζk +Ui,t,k, where i indexes students, t indexes time, k indexes schools, Yi,k indicates
Bagrut status, Dk is the treatment indicator, It equals 1 in 2001 and is 0 otherwise,
Jt equals 1 in 2002 and is 0 otherwise, topi indicates whether a student is in the top
quartile of the pre-Bagrut grade distribution of girls in the cohort, and ζk is a school
fixed effect. Angrist and Lavy estimate several related specifications by logit in
their Table 5. They report heteroskedasticity-robust standard errors for that table
and argue that clustering is accounted for by their fixed effects. For simplicity and
ease of interpretation, I estimate the model by least squares. The model predicts an
average increase in the probability of receiving Bagrut status by 0.114 relative to
a mean of 0.539 with a robust standard error of 0.037. A null of no effect against
the alternative that δ is positive is rejected at any conventional significance level
if standard normal critical values are used. This is in line with Table 5, col. (3)
of Angrist and Lavy (2009), who report significant effects ranging from 0.093 to
0.168 with standard errors ranging from 0.039 to 0.045 for this sample and several
subsamples.
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To apply the adjusted permutation test, I view each cluster as an individual
regression and separately estimate each of the q = 32 equations in

Yi,t,k =
{
θ1It + ηJt + βtopi + ζk + Ui,t,k, 1 ⩽ k ⩽ 15,
θ0It + ηJt + βtopi + ζk + Ui,t,k, 15 < k ⩽ 32.

Note that ζk is now simply the constant term in each regression. The resulting test
statistic T (θ̂n) ≈ 0.132 can be viewed as an alternative point estimate of δ and is
comparable in magnitude to the estimates reported in Angrist and Lavy (2009).
However, as can be seen in Figure 1, which plots the permutation distribution
from 100,000 draws together with the corresponding critical values, the adjusted
permutation test only rejects the null of no effect in favor of a positive effect at
the 10% level and barely does not reject at the 5% level. If the fixed effects in the
regression do not fully account for the within-cluster dependence in the data, the
positive effect for girls may therefore be far less significant than previously reported.
This result in also line with Angrist and Lavy, who find substantial but statistically
marginal positive effects for girls across a wide variety of plausible specifications
when they use cluster-robust standard errors. Also note that the 5% and 10% level
one-sided tests performed here are outside the feasible range of the Ibragimov and
Müller (2016) test. For the Canay et al. (2017) test, there are 17!/2 ≈ 1.78 × 1014
ways of testing if 15 treated clusters are paired with 15 control clusters and two
control clusters are dropped. In 1,000 randomly chosen unique pairings, the Canay
et al. (2017) test rejected the null of no effect against δ > 0 for 425 pairings at the
5% level and in 48 pairings at the 1% level. Any desired conclusion could be reached
by choosing a specific pairing. □
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ONLINE SUPPLEMENTAL APPENDIX TO
“PERMUTATION INFERENCE WITH A FINITE
NUMBER OF HETEROGENEOUS CLUSTERS”†

This supplemental appendix is organized as follows: Appendix A presents ad-
ditional theoretical results, some of which are of potentially independent interest.
Appendix B provides a step-by-step procedure for implementing the adjusted per-
mutation test and applies that procedure in several examples. Appendix C contains
additional numerical results and comparisons with the test of Ibragimov and Müller
(2016). Appendix D contains proofs. Appendix E presents a simple algorithm for
simulating critical values beyond those found in Table 1 in the main text.

Appendix A. Additional theoretical results

I start with a discussion of the behavior of the test under the alternative H1 : µ1 >
µ0. (Tests in the other direction follow by considering −X instead of X.) Let δ =
µ1−µ0 and denote by Φ the standard normal distribution function. The distribution
function of max1⩽k⩽q0 Xq1+k is equal to x 7→

∏
1⩽k⩽q0

Φ(x/σk+q1) =: Φ̃(x) and
therefore has a continuous and strictly increasing inverse. The following result gives
a simple lower bound on the power of a permutation test as a function of δ, Φ,
Φ̃, and the standard deviations in the treatment group. Here I assume that the α
under consideration is feasible, i.e., the corresponding ᾱ satisfies ⌈(1 − ᾱ)|G|⌉ < |G|
or, equivalently, ᾱ ⩾ 1/|G|. Otherwise the test becomes trivial because the null is
never rejected.

Theorem A.1 (Power). Suppose X = (X1, . . . , Xq) with independent Xk ∼ N(µ+
δ1{k ⩽ q1}, σ2

k), 1 ⩽ k ⩽ q. Let ᾱ ⩾ 1/|G|. Then, for every σ1, . . . , σq > 0,

inf
µ∈R

P
(
T (X) > T ᾱ(X,G)

)
⩾
∫ 1

0

∏
1⩽j⩽q1

Φ
(
δ − Φ̃−1(t)

σj

)
dt.

As can be expected, the power of the test is driven by the strength of the signal δ
relative to the noise represented by the standard deviations σ1, . . . , σq. For example,
a small treatment effect δ can be drowned out by large variation in the control group
because t 7→ Φ̃−1(t) will then be positive and large for most values of t. However, the
power of the test is not inherently limited. The integrand on the right is bounded by
1 and converges to 1 as δ → ∞ pointwise for every t. The integral and consequently
the power of the permutation test therefore approach 1 by dominated convergence
as δ → ∞. Both the bound and this result can be generalized to the symmetric
scale mixtures from Corollary 2.2; see Lemma D.1 for details.

Next, I discuss several aspects of the practical implementation of the permutation
test (2.5). First, one can still perform an asymptotic α-level test if the observed
data or statistic Xn converges in distribution to the X considered in Theorem 2.1
or Corollary 2.2. The reason is that the g that order T (gXn) and T (gX) as g varies
over G eventually coincide if sufficiently many entries of X are smooth. The proof
is a consequence of arguments in Canay et al. (2017).

†Andreas Hagemann, University of Michigan.
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Proposition A.2 (Large sample approximation). Let Xn ⇝ X ∈ Rq and let T be as
in (2.1). If X has independent entries of which more than q1 ∧ q0 are continuously
distributed, then

lim
n→∞

P
(
T (Xn) > T (j)(Xn,G)

)
= P

(
T (X) > T (j)(X,G)

)
, every 1 ⩽ j ⩽ |G|.

Second, if evaluating T (gX) over all elements of G is too costly because |G| =
(
q
q1

)
is large, the computational burden can be reduced by working with a random sample
Gm of m draws from the uniform distribution on G. This is often referred to
as “stochastic approximation.” The following result shows that the critical values
T p(X,Gm) and T p(X,G) lead to identical test decisions for any p and large m as long
as p|G| is not an integer. If p|G| is in fact an integer, the stochastic approximation
can be marginally more conservative. The reason is that p 7→ T p(X,G) can vary
discontinuously at integer values of p|G|. The stochastic approximation then hits the
order statistic just above T p(X,G) with nonzero probability. The same arguments
apply if the identity transformation is always included in Gm, which is common
practice for randomization tests.

Proposition A.3 (Stochastic approximation). Let Xn ∈ Rq be an arbitrary random
vector possibly depending on n. Suppose Gm is a collection of m random draws from
G independent of Xn. Then

lim
m→∞

P
(
T (Xn) > T p(Xn,Gm)

)
⩽ P

(
T (Xn) > T p(Xn,G)

)
, every p ∈ (0, 1),

with equality unless p|G| ∈ N. The result remains true if one of the members of Gm

is replaced by the identity with probability one.

As a referee points out, the choice of m is important in practice. In particular, it
seems if |G| is large, then m must be large as well to provide an accurate stochastic
approximation of the test decision. However, this is only true if the p-value p̂(X,Gm),
as defined in (2.6), is very close to ᾱ. If p̂(X,Gm) is much larger than ᾱ for a given
m, there is often enough information to conclude that p̂(X,G) is highly unlikely to
be smaller than ᾱ. The same is true if the direction of the inequalities is reversed.
The reason is that E(p̂(X,Gm) | X) = p̂(X,G) and, for almost every realization
of X, the central limit theorem implies that

√
m(p̂(X,Gm) − p̂(X,G)) converges

to mean-zero normal with variance p̂(X,G)(1 − p̂(X,G)). It is therefore easy to
test hypotheses of the form p̂(X,G) ⩾ ᾱ or p̂(X,G) ⩽ ᾱ with a very small error
tolerance β. For example, if p̂(X,Gm) > ᾱ for a given m, one can check whether
p̂(X,G) ⩽ ᾱ can be rejected at this m. If not, one can add draws from G until
the decision becomes possible. This idea is, in fact, the basis for the widely-used
algorithm of Davidson and MacKinnon (2000) for determining a sufficient number of
bootstrap repetitions in models where the bootstrap is expensive to compute. Their
algorithm can be adapted to the present problem with only notational changes.

Algorithm A.4 (Choosing m if |G| is very large). Choose a starting value m (e.g.,
10,000), a step size m′ (e.g., 1,000), a maximal number of permutations mmax (e.g.,
100,000), and an error tolerance β (e.g., .001).

(1) If p̂(X,Gm) < ᾱ, test the null hypothesis p̂(X,G) ⩾ ᾱ by rejecting in favor
of p̂(X,G) < ᾱ if

√
m(p̂(X,Gm) − ᾱ)/

√
ᾱ(1 − ᾱ) < Φ−1(β). Stop if the

null is rejected and use p̂(X,Gm) as if it were p̂(X,G).
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(2) If p̂(X,Gm) > ᾱ, test the null hypothesis p̂(X,G) ⩽ ᾱ by rejecting in favor
of p̂(X,G) > ᾱ if

√
m(p̂(X,Gm)− ᾱ)/

√
ᾱ(1 − ᾱ) > Φ−1(1−β). Stop if the

null is rejected and use p̂(X,Gm) as if it were p̂(X,G).
(3) Stop if m+m′ > mmax and use p̂(X,Gm) as if it were p̂(X,G). Otherwise

draw m′ additional permutations from G, set m = m+m′, and restart from
step (1).

Finally, the two approximation results in Propositions A.2 and A.3 can be
combined with Theorem 2.1 to obtain

lim
n→∞

lim
m→∞

P
(
T (Xn) > T ᾱ(Xn,Gm)

)
⩽ α,

i.e., adjusted permutation inference with an asymptotically normally distributed
vector with heterogeneous variances remains approximately valid even if the set of
permutations is drawn at random. It should also be noted that Proposition A.3 is
generic and can be restated for other statistics T and finite groups with appropriate
notational changes. Proposition A.2 can be extended to other statistics and groups
under smoothness conditions.

Appendix B. Additional examples

I first present a brief summary of how the permutation test can be implemented
in practice. By Theorem 3.2, the following procedure provides an asymptotically
α-level test in the presence of a finite number of large clusters that are arbitrarily
heterogeneous. The test is free of nuisance parameters, does not require matching
clusters or any other decisions on part of the researcher, can be two-sided or one-sided
in either direction, and is able to detect all fixed and 1/

√
n-local alternatives.

Algorithm B.1 (Permutation test adjusted for cluster heterogeneity).
(1) Order the data such that clusters 1 ⩽ k ⩽ q1 received treatment and

clusters q1 + 1 ⩽ k ⩽ q1 + q0 = q did not. Compute for each k = 1, . . . , q
and using only data from cluster k an estimate θ̂n,k of either θ1 or θ0
depending on whether k received treatment or not so that the difference
θ1 − θ0 is the treatment effect of interest. (Examples are provided below
and in the main text.) Define θ̂n = (θ̂n,1, . . . , θ̂n,q) and compute T (θ̂n) =
q−1
1
∑q1

k=1 θ̂n,k − q−1
0
∑q

k=q1+1 θ̂n,k.
(2) For the desired α, choose ᾱ from Table 1.
(3) Compute the set of permutations G defined in (2.2). Alternatively, draw a

large random sample of permutations Gm and replace G by Gm in step (4).
(4) Reject the null hypothesis of no effect of treatment H0 : θ1 = θ0 against

(a) θ1 > θ0 if T (θ̂n) > T ᾱ(θ̂n,G) for a test with asymptotic level α,
(b) θ1 < θ0 if T (−θ̂n) > T ᾱ(−θ̂n,G) for a test with asymptotic level α,
(c) θ1 ≠ θ0 if T (θ̂n) > T ᾱ(θ̂n,G) or T (−θ̂n) > T ᾱ(−θ̂n,G) for a test with

asymptotic level 2α,
where T ᾱ(·,G), defined in (2.3), is the ⌈(1 − ᾱ)|G|⌉-th largest value of the
permutation distribution of T (·).

I now discuss two additional examples of how the cluster-level statistics θ̂n can
be constructed such that the condition (3.3) required for Theorem 3.2 holds. For
simplicity, the discussion focuses on (3.3) under the null hypothesis H0 : θ1 = θ0
but the arguments apply more broadly.
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Example B.2 (Regression with cluster-level treatment). Consider a linear regression
model

Yi,k = θ0 + δDk + β′
kXi,k + Ui,k,

where i indexes individuals within clusters 1 ⩽ k ⩽ q. The parameter of interest is
the coefficient δ on the treatment dummy Dk indicating whether cluster k received
treatment or not. The regression also includes covariates Xi,k that vary within
each cluster and have coefficients βk that may vary across clusters. The condition
E(Ui,k | Dk, Xi,k) = 0 identifies θ1 = θ0 + δ within a treated cluster and θ0 within
an untreated cluster. The preceding display can then be written as

Yi,k =
{
θ1 + β′

kXi,k + Ui,k, 1 ⩽ k ⩽ q1,
θ0 + β′

kXi,k + Ui,k, q1 < k ⩽ q.

View these as q separate regressions and use the least squares estimates of the
constants θ1 and θ0 as θ̂n = (θ̂n,1, . . . , θ̂n,q). Also note that permuting θ̂n is identical
to permuting the vector of the observed treatment indicators that labels each of
these q regressions as coming from either a treated or an untreated cluster. The
same types of arguments as in Example 3.1 can be used to establish a central limit
theorem for θ̂n.

Under suitable conditions, the δ in this example can be interpreted as an average
treatment effect in a potential outcomes framework. See, e.g., S loczyński (2018) and
references therein for a precise discussion. The goal here is to make permutation
inference about δ. This should not be confused with testing the “sharp” null
hypothesis that the treatment and control potential outcomes under the intervention
are identical. Testing sharp nulls is often associated with permutation testing and
is a much stronger restriction than that the average effect δ on the outcomes be
zero. Rosenbaum (1984) explains how to use permutation inference to test sharp
nulls in the presence of covariates under assumptions on the propensity score. □

Example B.3 (Binary choice with cluster-level treatment). Consider a version of
the model in Example B.2 as the latent model Yi,k = θ0 + δDk + β′

0Xi,k + Ui,k in a
binary choice setting. Here Ui,k has a known, smooth, and symmetric distribution
function F and is independent of (Dk, Xi,k). Only 1{Yi,k > 0}, Xi,k, and Dk are
observed. Each cluster has nk observations and can be viewed as a separate binary
choice model

P (Yi,k > 0 | Xi,k) =
{
F (θ1 + β′

0Xi,k), 1 ⩽ k ⩽ q1,
F (θ0 + β′

0Xi,k), q1 < k ⩽ q.

If the treatment effect of interest is F (θ1 + β′
0x) − F (θ0 + β′

0x) for some x, then
H0 : θ1 = θ0 corresponds to the null hypothesis of no treatment effect. Let
ψθ,β(y, x) = (1, x′)′(1{y > 0} − F (θ + β′x)) and suppose the moment condition
Eψθ0,β0(Yi,k, Xi,k) = 0 holds for every i and k. The corresponding Z-estimates
(θ̂n,k, β̂′

n,k)′ for the k-th cluster are zeros of Ψn,k(θ, β) = n−1
k

∑nk

i=1 ψθ,β(Yi,k, Xi,k).
Denote the derivative of Ψn,k with respect to (θ, β′) by Ψ̇n,k.

Using the same limit theory as outlined in Example 3.3, it is possible to argue
under regularity conditions that Ψ̇n,k converges pointwise in probability to a limit
Ψ̇k and (θ̂n,k, β̂n,k) P→ (θ0, β0). If Ψ̇k(θ0, β0) is non-singular and

√
nΨn,k(θ0, β0) =

OP (1), then
√
n(θ̂n,k − θ0) = e′1Ψ̇k(θ0, β0)−1√nΨn,k(θ0, β0) + oP (1),
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where e1 is a conformable vector with a 1 in the first position and 0 otherwise.
Condition (3.3) is satisfied if a central limit theorem applies to

√
nΨn,k(θ0, β0).

Because this is a scaled average of mean-zero random vectors, the same references
as in Example 3.3 can be used to establish a central limit theorem. □

Appendix C. Additional numerical results

This section presents a detailed comparison of the Ibragimov and Müller (2016)
and adjusted permutation tests in Monte Carlo experiments and empirical examples.

Example C.1 (Equality of means). The adjusted permutation test developed here
and the Ibragimov and Müller (2016) test both rely on results about the behavior of
heterogeneous normal variables applied to certain test statistics. For the adjusted
permutation test, this statistic is the comparison on means T . For the Ibragimov-
Müller test, it is the studentized two-sample statistic

X̄1 − X̄0√
1

q1(q1−1)
∑q1

k=1(Xk − X̄1)2 + 1
q0(q0−1)

∑q
k=q1+1(Xk − X̄0)2

,

where X̄1 = q−1
1
∑q1

k=1Xk and X̄0 = q−1
0
∑q

k=q1+1Xk. This statistic is compared
to the quantiles of the Student t distribution with (q1 ∧ q0) − 1 degrees of freedom.
This example investigates the relative performance of the two tests.

As in Section 2, suppose X = (X1, . . . , Xq) ∈ Rq has independent entries Xk =
µ0 +(µ1−µ0)1{k ⩽ q1}+σkZk with Zk distributed as N(0, 1). The results reported
here use µ0 = 0. To investigate the impact of heterogeneity on the two tests, I
considered the following six configurations of σ1, . . . , σq:
(a) σ1, . . . , σq = 1,
(b) σ1, . . . , σq−1 = 1, σq = 100
(c) σ1, . . . , σq1−1 = 1, σq1 = 100, σq1+1, . . . , σq−1 = 1, σq = 100,
(d) σ1, . . . , σq1 = 1, σq1+1, . . . , σq = 3
(e) σ1, . . . , σq1/2 = 3, σq1/2+1, . . . , σq1+q0/2 = 1, σq1+q0/2+1, . . . , σq = 3,
(f) σ1, . . . , σq1/2 = 1, σq1/2+1, . . . , σq1+q0/2 = 3, σq1+q0/2+1, . . . , σq = 9.
Configurations (a), (d), (e), and (f) are taken from Ibragimov and Müller (2016).

Rows (a)-(f) of Figure 2 correspond to the six configurations (a)-(f) and show
the rejection frequencies of the adjusted permutation test (black lines) and the
Ibragimov-Müller test (grey) at the 5% level (dashed line) as µ1 increases. The
null hypothesis is correct at µ1 = 0. The columns correspond, from left to right, to
the sample sizes (q1 = 8, q0 = 8), (q1 = 8, q0 = 16), and (q1 = 16, q0 = 16). Each
horizontal coordiate was computed from 10,000 Monte Carlo replications. As can
be seen, the variation in σk led to marked differences in power at different levels of
heterogeneity. The adjusted permutation test was able to reject far more false nulls
than the Ibragimov-Müller test for small µ1 when there were few large variances
as in (b) and (c). For instance, in (b) with (q1 = 8, q0 = 8) at µ1 = 1 the adjusted
permutation test rejected in 47.62% of all cases whereas the Ibragimov-Müller test
rejected in only 6.36% of all cases. This difference eventually disappeared for large
µ1. However, neither test is more powerful. With slightly different variances within
or across groups as in (d) and (f), the Ibragimov-Müller test had an advantage when
the sample sizes differed substantially. The differences between the two tests were
much smaller for the other configurations. Other samples sizes (not shown) led to
qualitatively similar results.



PERMUTATION INFERENCE WITH CLUSTERS 6 (Online Appendix)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

(a)

q1= 8, q0= 8

Adj. perm.
IM
5% lvl.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

q1= 8, q0= 16

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

q1= 16, q0= 16

0 10 20 30 40

0.
0

0.
4

0.
8

(b)

0 10 20 30 40

0.
0

0.
4

0.
8

0 10 20 30 40

0.
0

0.
4

0.
8

0 10 20 30 40

0.
0

0.
4

0.
8

(c)

0 10 20 30 40

0.
0

0.
4

0.
8

0 10 20 30 40
0.

0
0.

4
0.

8

0 1 2 3 4 5

0.
0

0.
4

0.
8

(d)

0 1 2 3 4 5

0.
0

0.
4

0.
8

0 1 2 3 4 5

0.
0

0.
4

0.
8

0 1 2 3 4 5

0.
0

0.
4

0.
8

(e)

0 1 2 3 4 5

0.
0

0.
4

0.
8

0 1 2 3 4 5

0.
0

0.
4

0.
8

0 2 4 6 8 10

0.
0

0.
4

0.
8

(f)

0 2 4 6 8 10

0.
0

0.
4

0.
8

0 2 4 6 8 10

0.
0

0.
4

0.
8

Figure 2. Rejection frequencies of the adjusted permutation test (black lines)
and the Ibragimov-Müller test (IM, grey) for models (a)-(f) (rows) in Exam-
ple C.1 for q1 = q0 = 8 (left), q1 = 8, q0 = 16 (middle), and q1 = q0 = 16
(right).
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Figure 3. Rejection frequencies of the adjusted permutation test (black lines)
and the Ibragimov-Müller test (IM, grey) as in Figure 2 but with Cauchy
distributions.
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As a referee points out, it would be interesting to compare the performance of
the adjusted permutation test and the Ibragimov-Müller test in fat-tailed settings.
Just like the adjusted permutation test, the Ibragimov-Müller test can be used
with mixtures of normals, which includes models with infinite variances. I therefore
repeated the above experiments with standard Cauchy distributed Zk instead of
standard normal distributions, holding all else equal. The results are plotted in
Figure 3. As can be seen, within the scope of the configurations for (a)-(f), the
adjusted permutation test was more powerful than the Ibragimov-Müller test for
every configuration at all sample sizes and for all values of µ1. In sharp contrast to
the situation with standard normal Zk, this was true even when the samples sizes
differed. □

A reviewer also recommends comparing the conclusions of adjusted permutation
inference and the Ibragimov-Müller test in empirical examples discussed in Ibragimov
and Müller (2016), which include tests of hypotheses on January effects and a
randomized trial of Bloom, Eifert, Mahajan, McKenzie, and Roberts (2013).

Example C.2 (January effects; Keim 1983). Keim (1983) investigates January effects
in stock returns. He considers excess returns in portfolios constructed from firms in
the top and bottoms decile of size, as measured by market value of equity on the New
York Stock Exchange (NYSE) and American Stock Exchange (now called NYSE
American) over the period 1963-1979. To test whether the January effect is time
invariant, Ibragimov and Müller assume that the data are suitably approximated
by a scale mixture of normals and implement their test by comparing the January
excess returns for 1963-1969 to the January excess returns for 1970-1979. They
do not reject the null hypothesis of time invariance at the 5% level but reject at
the 10% level. The adjusted permutation test does not reject at either significance
level. □

Example C.3 (Modern management practices; Bloom et al. 2013). In this example,
I reanalyze data form a randomized trial of Bloom et al. (2013). Their intervention
provided five months of extensive management consulting from a large international
consulting firm to eleven randomly selected Indian textile plants. A control group
of six randomly selected plants received only one month of diagnostic consulting.
The experiment ran from 2008 to 2011 and several key performance measures were
collected before, during, and after the intervention. These measures include data on
quality defects, inventory, output, and total factor productivity. Here I focus on
output because it is the only measure that has data for all 17 firms available. For
the effect on output in their main results in their Table II, Bloom et al. (2013) run
a regression of the log of picks (one pick is a single rotation of a weaving shuttle)
on a treatment dummy, time fixed effects, and firm fixed effects. They find a 9%
increase in output as a result of the intervention.

Bloom et al. (2013) use, among other methods, the Ibragimov and Müller (2016)
test to conduct inference. The adjusted permutation test also applies and can be
computed as outlined in Examples 3.1 and 3.3. Both the Ibragimov-Müller and
the adjusted permutation test find a significant positive effect on log output at the
5% level, which confirms that the results of Bloom et al. (2013) remain valid even
if methods designed for a small number of arbitrarily heterogeneous clusters are
used. □
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Appendix D. Proofs

Proof of Theorem 2.1 and Corollary 2.2. Denote the distribution function of an
arbitrary random variable Y by FY . We have T (X) > T (|G|−1)(X,G) if and only
if T (X) = T (|G|)(X,G). Because the test statistic is location invariant, assume
without loss of generality that µ = 0. Denote by X(1), X(2), . . . , X(q) the order
statistics of X. Then T (|G|)(X,G) = q−1

1
∑q1

k=1X(k+q0) − q−1
0
∑q0

k=1X(k). Because
T (X) = T (|G|)(X,G) and min{X1, . . . , Xq1} < max{Xq1+1, . . . , Xq} cannot be true
at the same time and min{X1, . . . , Xq1} > max{Xq1+1, . . . , Xq} implies T (X) =
T (|G|)(X,G), it follows that P (T (X) = T (|G|)(X,G)) equals

P
(
min{X1, . . . , Xq1} > max{Xq1+1, . . . , Xq}

)
+ P

(
T (X) = T (|G|)(X,G),min{X1, . . . , Xq1} = max{Xq1+1, . . . , Xq}

)
.

Suppose Xk = SkZk, 1 ⩽ k ⩽ q, where the Sk is nonzero with probability one
and the Zk has a continuous distribution. The second line of the preceding display
must then be zero conditional on S = (S1 . . . , Sq) and the same must therefore hold
unconditionally. The first line conditional on S1 = σ1, . . . , Sq = σq for fixed scales
σ1, . . . , σq is, by independence, equivalent to the statement P (min{X1, . . . , Xq1} >
max{Xq1+1, . . . , Xq}) with Xk = σkZk for 1 ⩽ k ⩽ q. In the following, I will
therefore work with Xk = σkZk first and return to the unconditional case later.

Let V = max{X1, . . . , Xq1} and W = max{Xq1+1, . . . , Xq}. Symmetry of
X1, . . . , Xq1 and independence of V and W imply
P
(
min{X1, . . . , Xq1} > W

)
= P

(
min{−X1, . . . ,−Xq1} > W

)
= P (V +W < 0).

Suppose q1 < q0. The two maxima V and W must satisfy

P (V +W < 0) = P

(
q1⋂
k=1

q0⋂
l=1

{Xk +Xl+q1 < 0}
)
⩽ P

(
q1⋂
k=1

{Xk +Xk+q1 < 0}
)
.

Define Yk = Xk +Xk+q1 . Note that the Yk are independent across 1 ⩽ k ⩽ q1 and
symmetric because P (Xk + Xk+q1 ⩽ y) = P (−Xk − Xk+q1 ⩽ y) = P (−Yk ⩽ y).
The right-hand side of the preceding display then equals P (max{Y1, . . . , Yq1} <
0) = FY (0)q1 . Conclude from symmetry that P (V +W < 0) ⩽ 0.5q1 . Repeat the
argument with q1 > q0 to obtain

P (V +W < 0) ⩽ max{0.5q1 , 0.5q0} = 2min{q1,q0},

as desired. To see that this bound is tight, assume first that q1 ⩾ q0. Choose
σ1 = · · · = σq1 = 1, σ = σq1+1 = · · · = σq, and let U = max{Z1+q1 , . . . , Zq}. Then
P (V + W < 0) = EFV (−σU). If U > 0, then FV (−σU) → 0 almost surely as
σ → ∞. If U < 0, then FV (−σU) → 1 almost surely as σ → ∞. Conclude from
dominated convergence that EFV (−σU) → P (U < 0) = 0.5q0 . If q1 < q0, switch V
and W . This proves the theorem.

For the corollary, return to Xk = SkZk and redefine V,W accordingly. It is still
true that P (V + W | S) ⩽ 1/2min{q1,q0} almost surely and therefore P (T (X) >
T (|G|−1)(X,G)) ⩽ 1/2min{q1,q0}, as required for the corollary. □

Define V = max{S1Z1, . . . , Sq1Zq1} and W = max{Sq1+1Zq1+1, . . . , SqZq}. Let
w 7→ FW (w | S) be the distribution function of W conditional on S.

Lemma D.1. Suppose X = (X1, . . . , Xq) with Xk = µ + δ1{k ⩽ q1} + SkZk,
1 ⩽ k ⩽ q, where the Z1, . . . , Zq are iid copies of a random variable Z with
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continuous distribution function and S = (S1, . . . , Sq) is a random vector independent
of Z1, . . . , Zq with P (Sk > 0) = 1 for 1 ⩽ k ⩽ q. If Z and −Z have the same
distribution, then

inf
µ∈R

P
(
T (X) > T ᾱ(X,G)

)
⩾ E

∫ 1

0

∏
1⩽j⩽q1

FZ

(
δ − F−1

W (t | S)
Sj

)
dt.

The right-hand side converges to 1 as δ → ∞.

Proof of Lemma D.1. This proof is similar to the proof of Theorem 2.1. As before,
consider T (X) = T (|G|)(X,G) and assume without loss of generality the case
µ = 0 so that min{X1, . . . , Xq0} has the same distribution as δ − V . Because
T (|G|)(X,G) = q−1

1
∑q1

k=1X(k+q0) − q−1
0
∑q0

k=1X(k), continuity implies

P
(
T (X) = T (|G|)(X,G)

)
= P (V +W < δ). (D.1)

Independence of V and W conditional on S and continuity imply that there is an
independent standard uniform U such that the preceding display equals

EP
(
V < δ − F−1

W (U | S) | S
)

= E
∫ 1

0
P
(
V < δ − F−1

W (t | S) | S
)
dt,

where the equality follows from Tonelli’s theorem. By independence, distribution
function of V conditional on S is v 7→

∏
1⩽j⩽q1

FZ(v/Sj). The first result now
follows because P (T (X) > T ᾱ(X,G)) ⩾ P (T (X) = T (|G|)(X,G)). The second
result follows from (D.1) as δ → ∞. □

Proof of Theorem A.1. This follows immediately from Lemma D.1 by letting S =
(σ1, . . . , σq) with probability one and FZ = Φ. □

Proof of Proposition A.2. Following Canay et al. (2017), I only have to show that
for any two distinct g, g′ ∈ G, either T (gx) = T (g′x) for all x ∈ Rq or P (T (gX) ̸=
T (g′X)) = 1. Let wg(k) = q−1

1 1{g(k) ⩽ q1}−q−1
0 1{g(k) > q1} and notice that g ̸= g′

implies that wg(k) ̸= wg′(k) for at least two k′, k′′ ∈ {1, . . . , q}. By the pigeonhole
principle, Xk′ or Xk′′ must be continuously distributed. Then T (gX) − T (g′X) =∑q

k=1(wg(k) − wg′(k))Xk is continuously distributed by independence and therefore
P (T (gX) − T (g′X) = 0) = 0. □

Proof of Proposition A.3. All limits are as m → ∞. Let Gm = {G1, . . . , Gm}
be a collection of m draws from the uniform distribution on G, in which case
E(p̂(X,Gm) | X) = p̂(X,G). For almost every realization of X, the central limit
theorem implies that

√
m(p̂(X,Gm)− p̂(X,G)) converges to mean-zero normal with

variance p̂(X,G)(1 − p̂(X,G)). Because p̂(X,G) ⩾ 1/|G|, this variance can only be
zero if p̂(X,G) = 1. This occurs if and only if T (gX) ⩾ T (X) for all g ∈ G, which
also implies p̂(X,Gm) = 1 for such X.

By the equivalence of p-values and critical values, T (X) > T p(X,Gm) if and only
if p̂(X,Gm) ⩽ p and therefore

P
(
T (X) > T p(X,Gm)|X

)
= P

(√
m
(
p̂(X,Gm)− p̂(X,G)

)
⩽

√
m
(
p− p̂(X,G)

)
|X
)
.

Since P (
√
m(p(X,Gm) − p(X,G)) ⩽ t | X) converges almost surely to a (possibly

degenerate) normal distribution function, for every ε > 0 and almost every realization
of X there is an M (possibly depending on ε and X) such that the limit of
P (

√
m(p(X,Gm) − p(X,G)) ⩽ −M | X) is at most ε and P (

√
m(p(X,Gm) −
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p(X,G)) ⩽ M | X) is at least 1 − ε. If p > p(X,G), then
√
m(p − p(X,G)) is

eventually larger than every such M . If p < p(X,G), then
√
m(p − p(X,G)) is

eventually smaller than −M . If p = p(X,G), which cannot occur if p(X,G) = 1, the
preceding display converges almost surely to 0.5. Conclude that the preceding display
converges almost surely to 1{p(X,G) < p} + 1{p(X,G) = p}/2. The dominated
convergence theorem then implies

P
(
T (X) > T p(X,Gm)

)
→ P

(
p̂(X,G) < p

)
+ 0.5P

(
p̂(X,G) = p

)
.

The right hand side is equal to P (p̂(X,G) ⩽ p) if P (p̂(X,G) = p) = 0, which is
the case if p|G| is not an integer because infinitesimal changes in p cannot change
P (p̂(X,G) ⩽ p). If P (p̂(X,G) = p) is nonzero, then the preceding display is smaller
than P (p̂(X,G) ⩽ p).

If G′
m = {id, G2, . . . , Gm} then, both unconditionally and conditional on X,

√
m
(
p̂(X,G′

m) − p̂(X,Gm)
)

= 1 − 1{T (G1X) ⩾ T (X)}
√
m

P→ 0.

The proof now follows from the arguments for Gm. □

Proof of Theorem 3.2. Suppose θ1 = θ0. Let 1q denote a q-vector of ones and
X = (X1, . . . , Xq) ∼ N(0,diag(σ2

1 , . . . , σ
2
q)(θ0)). Notice that T (θ̂n) > T ᾱ(θ̂n,G) if

and only if
T
(√
n(θ̂n − θ01q)

)
> T ᾱ

(√
n(θ̂n − θ01q),G

)
.

Hence, it suffices to prove the result with Xn =
√
n(θ̂n − θ01q) in place of θ̂n.

Because Xn ⇝ X, the desired result for θ1 = θ0 follows from Proposition A.2 and
Theorem 2.1.

Suppose θ1 = θ0 + δ/
√
n. Let Xn =

√
n(θ̂n,k − θ1{k⩽q1})1⩽k⩽q and ∆ = (δ1{k ⩽

q1})1⩽k⩽q. Then Xn+∆⇝ X+∆ by the assumed continuity and the Slutsky lemma.
By construction, T (θ̂n) > T ᾱ(θ̂n,G) is equivalent to T (Xn + ∆) > T ᾱ(Xn + ∆,G).
Proposition A.2 then implies

P
(
T (Xn + ∆) > T ᾱ(Xn + ∆,G)

)
→ P

(
T (X + ∆) > T ᾱ(X + ∆,G)

)
.

Now apply the lower bound developed in Theorem A.1 to the right-hand side.
Suppose θ1 = θ0 + δ. Let ∆n =

√
n(δ1{k ⩽ q1})1⩽k⩽q so that T (θ̂n) ⩽ T ᾱ(θ̂n,G)

is equivalent to T (Xn) ⩽ T ᾱ(Xn + ∆n,G) − T (∆n). For a large M > 0, the
probability that the latter event occurs is bounded above by

P
(
T (Xn) ⩽ −M

)
+ P

(
T ᾱ(Xn + ∆n,G) − T (∆n) > −M

)
. (D.2)

The first term is bounded above by supn P (|T (Xn)| ⩾ M). This can be made
as small as desired by choosing M large enough because the continuous mapping
theorem implies that T (Xn) is uniformly tight. By the properties of quantile
functions, the second term in the preceding display is equal to

P

(∑
g∈G

1
{
T (gXn) + T (g∆n) − T (∆n) > −M

}
> |G|ᾱ

)
.

Because T (g∆n) − T (∆n) = 0 for g ∈ Ḡ = {g ∈ G :
∑q1

k=1 1{g(k) ⩽ q1} = q1}
and T (g∆n) − T (∆n) ⩽ −2

√
nδ → −∞ for g ∈ G \ Ḡ, uniform tightness of

T (gXn) for every g ∈ G implies P (1
{
T (gXn) + T (g∆n) − T (∆n) > −M

}
= 1) =

P (T (gXn) +T (g∆n)−T (∆n) > −M) converges to 0 for every given M if g ∈ G\ Ḡ.
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In addition, T (gXn) = T (Xn) for g ∈ Ḡ and hence the preceding display is within
o(1) of

P
(
|Ḡ|1

{
T (Xn) > −M

}
> |G|ᾱ

)
,

which equals zero if |Ḡ| ⩽ |G|ᾱ. Let n → ∞ and then M → ∞ in (D.2) to
conclude P (T (θ̂n) > T ᾱ(θ̂n,G)) → 1 if |Ḡ| ⩽ |G|ᾱ. Because |Ḡ| = q1!(q − q1)!
and |G| = q!, this proves the result for ᾱ ⩾ 1/

(
q
q1

)
. If |Ḡ| > |G|ᾱ or, equivalently,

⌈
(
q
q1

)
(1 − ᾱ)⌉ =

(
q
q1

)
, then T ᾱ(θ̂n,G) is the maximal order statistic and the power

of the test is zero for any sample size. □

Appendix E. Numerical computation of ᾱ

This section provides two algorithms for the numerical computation of ᾱ as in
Table 1. For the algorithms, notice that it is of no loss of generality to assume
that the standard deviations σ1, . . . , σq are restricted to the interval (0, 1] because
both sides of T (X) > T (j)(X,G) can be divided by the largest standard deviation
without altering the test decision.

Algorithm E.1 (q1 and q0 small). (1) Choose j, starting with j = |G| − 2.
(2) Draw a large number R of iid copies V 1, . . . , V R of a q-vector V with

independent Beta(a, b) entries, e.g., Beta(0.1, 0.1).
(3) For each 1 ⩽ r ⩽ R, draw a large number S of iid copies X1, . . . , XS of

X ∼ N(0,diag V r) and approximate P (T (X) > T (j)(X,G)) by

1
S

S∑
s=1

1
{
T (Xs) > T (j)(Xs,G)

}
.

(4) If there is an r in 1, . . . , R for which the number from step (3) is larger than
α (or, alternatively, α + η for a small tolerance η > 0), let j∗ = j + 1. If
not, decrease j by 1 and restart at step (1).

(5) Define ᾱ = 1 − j∗/
(
q
q1

)
.

Algorithm E.2 (q1 or q0 large). (1) Choose a large number m. Choose j, start-
ing with j = m− 2.

(2) Draw a large number R of iid copies V 1, . . . , V R of a q-vector V with
independent Beta(a, b) entries, e.g., Beta(0.1, 0.1).

(3) For each 1 ⩽ r ⩽ R, draw a large number S of iid copies X1, . . . , XS of
X ∼ N(0,diag V r) and approximate P (T (X) > T (j)(X,G)) by

1
S

S∑
s=1

1
{
T (Xs) > T (j)(Xs,Gm)

}
.

(4) If there is an r in 1, . . . , R for which the number from step (3) is larger than
α (or, alternatively, α + η for a small tolerance η > 0), let j∗ = j + 1. If
not, decrease j by 1 and restart at step (1).

If
(
q
q1

)
< 1, 500, Table 1 uses two passes of Algorithm E.1 with a = b = 0.1 and

R = 3, 000. The first pass computes steps (1)-(3) with S = 1, 000. The second pass
takes, for each j, the top 1% values of 1 ⩽ r ⩽ R that led to the highest rejections
and computes steps (3)-(5) with S = 10, 000. If

(
q
q1

)
⩾ 1, 500, Table 1 uses two

passes of Algorithm E.2 with a = b = 0.1, R = 3, 000, and m = 1, 500. The first
pass computes steps (1)-(3) with S = 1, 000. The second pass takes, for each j,
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the top 1% values of 1 ⩽ r ⩽ R that led to the highest rejections and computes
steps (3)-(5) with S = 10, 000. The Beta(0.1, 0.1) distribution is used here because
highest rejection rates seem to occur near the boundaries of the parameter space
where this distribution has most of its mass.
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